Going back in time...

o

Going back in time...

Euclid
~300 B.C.

o

Going back in time...

Euclid Lobachevsky Bolyai Riemann

~300 B.C. ~1829 ~1830 ~1856 @

Going back in time... L

Euclid Lobachevsky Bolyai Riemann

~300 B.C. ~1829 ~1830 ~1856 @

Felix Klein and the “Erlangen Program” (1872)

Vergleichende Betrachtungen

iiber

neuere geomefrische Forschungen

von

Dr. Felix Klein,
0. . Professor der Mathematik an der Universitit Erlangen.

zum Eintritt in die philosophische Facult4t und den Senat
der k. Friedrich-Alexanders-Universitit

zu Erlangen.

Erlangen

Verlag von Andreas Deichert

o

Felix Klein and the “Erlangen Program” (1872)

Vergleichende Betrachtungen

iiber

neuere geomefrische Forschungen

von

Dr. Felix Klein,
0. . Professor der Mathematik an der Universitit Erlangen.

———

zum Eintritt in die philosophische Facult4t und den Senat
der k. Friedrich-Alexanders-Universitit

zu Erlangen.

Blueprint for unifying geometries
Lens of invariances and symmetries

Formalised in the language of group theory!

O

Impact of the Erlangen Program

e Strong impact on geometry; no longer hunting for the “one true geometry”
o Formalised by Elie Cartan in the 1920s

e Physics: Noether's Theorem (all conservation laws derivable from symmetry!)
o Even enabled the classification of elementary particles (irreducible representations)

e (Category Theory
o “can be regarded as a continuation of the Klein Erlangen Program, in the sense that a
geometrical space with its group of transformations is generalized to a category with
its algebra of mappings”; — Eilenber, Lane (creators of CT)

O

Deep learning, circa 2020

C3:f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
30x32 6@28x28 854, Fids C5: 1 Output
6@ 14x14. ¢ gd ayer ,;%: layer %TPUT Probabiities

[[Add & Norm }

J

‘ Full conr#ection ‘ Gaussian connections (o &'Norm \ |] A’;’dl *_1":‘0’;” J
Convolutions Subsampling Convolutions Subsampling Full connection :nt;t;i
Nx
1 < Add & Norm
Hidden layer Hidden layer Nx
Y Y Add & Norm T
Multi-Head Multi-Head
Attention Attention
° ° 1t 1t
Q J \C —)
o °
° * Positional N a Positional
 FAN ¢ % Encoding Encoding
Input Ompm Input Output
Embedding Embedding
° RelLU RelLU 1 T
° ° Inputs Outputs
° . ’ ° . e (shifted right)
° °
Figure 1: The Transformer - model architecture.
° °
o °
*—4 *—g¢
° °
° e
° °

Deep learning, circa 2020

— C3: f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 .

S2: f. maps
6@14x14

T Y v—

QOutput
Probabilities

Add & Norm

Add & Norm

Multi-Head
Attention
Nx

Add & Norm

Masked
Multi-Head
Attention

it
N
® Positional

Encoding
Output
Embedding

Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

O

Could GNNs be the answer?

“If we squint hard enough”, (m)any NNs can be seen as message passing over a graph
o Further, most data we receive from nature is inherently graph-structured
o So, GNNs likely play a part in the “one true architecture” (motivating this course)

/

o /
O
@
? 3
- £
| ()]
P £
<
n

F——

_ 1l—

(a) Fully connected (b) Convolutional

But to formalise this, we need to understand GNNs beyond permutation equivariance!

1

Sharing in time
4 A

(c) Recurrent

O

DeepMind

...NOW it’s our turn to study geometry :)

Michael Bronstein Joan Bruna Taco Cohen Petar Velickovié
Oxford [/ Twitter NYU Qualcomm DeepMind / Cambridge

O

DeepMind

Geometric Deep Learning
GNNs Beyond Permutation Equivariance

Petar Velickovic¢

Stanford University
CS224W
30 November 2021

O

DeepMind

Learning in
high dimensions
is hard

o

The Curse of Dimensionality

Even “simple” target functions (e.g. 1-Lipschitz) require exponential samples in nb. dimensions.

o

Low-dimensional projections don’t necessarily help!

Shallow MLPs can lose a lot of the fidelity of their inputs.

What can we do?

O

DeepMind

Symmetries,
Groups and
Invariances

o

Geometry to the rescue!

® We can inject further assumptions about the geometry of through inductive biases
o Restrict the functions in our hypothesis space to ones that respect the geometry.
o This can make the high-dimensional problem more tractable!

e Some popular examples:
o Image data should be processed independently of shifts
o Spherical data should be processed independently of rotations
o Graph data should be processed independently of isomorphism

> M

e We will now attempt to formalise this!

O

Key elements!

e \We assume data lives on a domain,
o eg.forimages, u € Q are pixels; for graphs they are nodes

e We assume a feature space, C, to be stored in elements of a domain
o For our purposes, C = R*

e We can then define featurised domains using a space of feature functions X(L, C)
o x € X(®, C)is afunction s.t. x(u) € C gives features of elementu € Q
o For discrete environments we can think of X as a feature matrix (X € R®Ixk)

O

Principle 1: Symmetry groups

e Symmetry is a transformation that leaves an object invariant (i.e. unchanged)
o Hence they must be composable, invertible, contain identity...

e In fact, they can be reasoned about using a very elegant mathematical object: the group

e Elements of these groups are domain transformations (e.g. some functions g: Q@ — Q).

O

Principle 1: Symmetry groups

e Symmetry is a transformation that leaves an object invariant (i.e. unchanged)
o Hence they must be composable, invertible, contain identity...

e Infact, they can be reasoned about using a very elegant mathematical object: the group

A group is a set & along with a binary operationo : & x & — & called :

composition (for brevity, denoted by juxtaposition g o h = gh) satisfying / . $F3\
the following axioms: . / 5
Associativity: (gh)t = g(ht) for all g, b, ¢ € &. R/3 A~ S
Identity: there exists a unique ¢ € & satisfying eg = ge = g forall g € &. (5 4 1
Inverse: For each g € & there is a unique inverse g~ € & such that ¢ AR 2 1 ¢

gg =g 'g=c¢

27 N NG
3 1 1 2
Closure: The group is closed under composition, i.e., for every g,h € &,
we have gh € 8. Q @

Principle 1: Symmetry groups

e Symmetry is a transformation that leaves an object invariant (i.e. unchanged)
o Hence they must be composable, invertible, contain identity...

e Infact, they can be reasoned about using a very elegant mathematical object: the group

A group is a set & along with a binary operationo : & x & — & called

composition (for brevity, denoted by juxtaposition g o h = gh) satisfying

the following axioms:

Associativity: (gh)t = g(ht) for all g, b, ¢ € &.

Identity: there exists a unique ¢ € & satisfying eg = ge = g forall g € &.

Inverse: For each g € & there is a unique inverse g~! € & such that
1 _ g1l —

g9 =9 g=c¢

Closure: The group is closed under composition, i.e., for every g,h € &,

we have gh € 8.

Group actions

We are interested in how these groups affect data

o Group action (g,u) — g.u for a group element g, and a domain element u

o E.g.translating or rotating an image, or permuting a set

We will be interested in linear group actions: g.(oz:c + ﬂ:c’) — a(g,x) + ﬁ(g,x’)

This also allows us to represent group actions using linear algebra; p : B — RPXn

A n-dimensional real representation of a group ® isa map p : & — R™*",
assigning to each g € & an invertible matrix p(g), and satisfying the
condition p(gh) = p(g)p(h) for all g,h € B. A representation is called

unitary or orthogonal if the matrix p(g) is unitary or orthogonal for all
g € 6.

O

Invariance and equivariance

e We can largely simplify high-dimensional learning by exploiting the symmetries in ®!

A function f : X(2) — Y is B-invariant if f(p(g)x) = f(z) forall g € &,
i.e., its output is unaffected by the group action on the input.

e.g. image classification: output class (likely?) won't depend on image shifts

A function f : X(Q) — X (Q) is B-equivariant if f(p(g)z) = p(g) f(z) for
all g € &, i.e., group action on the input affects the output in the same
way.

e.g. image segmentation: segmentation mask must follow any shifts in the input

O

Principle 2: Scale separation

e Want signal to be stable under slight deformations of the
domain

e We derive: highly beneficial to compose local

operations to model larger-scale ones

o local ops won't globally propagate errors
o e.g.CNNs with 3 x 3 kernels, but very deep

e Accordingly, we would like to support locality in our layers!

e cf. Fourier Transform vs. Wavelets

—“_/\/\,_
\/\/\/\/A/\/\/\;
T i

distortion

DeepMind

The Blueprint
of Geometric
Deep Learning

o

The key “building blocks” of Geometric Deep Learning

Linear ®-equivariant layer B : X (Q,C) - X (Q',C"),
satisfying B(g.x) = g.B(x) for all g € ® and x € X'(Q, C).

Nonlinearity o : C = C’ applied element-wise as (a(x))(u) = o(x(u)).

Local pooling (coarsening) P : X (Q,C) - X (Q',C), such that Q' € Q.

®-invariant layer (global pooling) A : X (Q,C) = Y,
satisfying A(g.x) = A(x)forallg € ® and x € X' (Q, C).

O

The key “building blocks” of Geometric Deep Learning

Equivariant local layers

Linear ®-equivariant layer B : X (Q,C) - X (Q',C"),
satisfying B(g.x) = g.B(x) for all g € ® and x € X'(Q, C).

Nonlinearity o : C = C’ applied element-wise as (a(x))(u) = o(x(u)).

Local pooling (coarsening) P : X (Q,C) - X (Q',C), such that Q' € Q.

®-invariant layer (global pooling) A : X (Q,C) = Y,
satisfying A(g.x) = A(x)forall g € ® and x € X (Q,C).

O

The key “building blocks” of Geometric Deep Learning

Linear ®-equivariant layer B : X (Q,C) - X (Q',C"),
satisfying B(g.x) = g.B(x) for all g € ® and x € X'(Q, C).
Activation function

Nonlinearity o : C = C’ applied element-wise as (a(x))(u) = o(x(u)).

(necessary for deep learning!:))

Local pooling (coarsening) P : X (Q,C) - X (Q',C), such that Q' € Q.

®-invariant layer (global pooling) A : X (Q,C) = Y,
satisfying A(g.x) = A(x)forall g € ® and x € X (Q,C).

O

The key “building blocks” of Geometric Deep Learning

Linear ®-equivariant layer B : X (Q,C) - X (Q',C"),
satisfying B(g.x) = g.B(x) for all g € ® and x € X'(Q, C).

Nonlinearity o : C = C’ applied element-wise as (a(x))(u) = o(x(u)).

Local pooling (coarsening) P : X (Q,C) - X (Q',C), such that Q' € Q.

®-invariant layer (global pooling) A : X (Q,C) = Y,
satisfying A(g.x) = A(x)forallg € ® and x € X' (Q, C).

O

All you need to build the architectures that are all you need :)

o

All the fan-favourites are easily derivable

..with many (potentially) unexpected and useful extras! :)

Architecture

CNN
Spherical CNN
Intrinsic | Mesh CNN

GNN
Deep Sets

Transformer

LSTM

Domain (2
Grid

Sphere / SO(3)
Manifold

Graph
Set
Complete Graph

1D Grid

Symmetry group &
Translation
Rotation SO(3)

Isometry Iso(€2) /
Gauge symmetry SO(2)

Permutation >,
Permutation >,
Permutation >,

Time warping

O

DeepMind

The “5G” of
Geometric
Deep Learning

o

The “5G” of Geometric Deep Learning

We will use the remainder of this lecture to study a few interesting instances of this blueprint

Grids Groups Graphs Geodesics &
Gauges

O

The “5G” of Geometric Deep Learning

We will use the remainder of this lecture to study a few interesting instances of this blueprint

Images & Homogeneous Graphs & Sets Manifolds, Meshes &
Sequences spaces Geometric graphs

Throughout CS224W, the focus was primarily on the domain of graphs.

O

Our strategy for the rest of the lecture

We start by seeing how GNNs fit in this paradigm

(@)

This will involve re-deriving / re-introducing some concepts you've seen in the course

Then, we will see how we can use the blueprint to expand GNNs into other domains

(@)

(@)

Also, it will give us an insight into “the world beyond”
GNNs beyond permutation equivariance!

Our discussion will span many architectures you (may) know of :)

(@)

o O O O

Deep Sets
Transformers
CNNs
Spherical CNNs
Mesh CNNs

O

Architectures of interest

4
N
I " X o] |
_’ ® ®
% (o] [¢] [0}
32 32 ﬁ m(r))"
3 6
Perceptrons CNNs Group-CNNs LSTMs
Function regularity Translation Translation+Rotation, Time warping
Global groups
PEey
s ’
'1.-".' L} 'l':'r??.-;l
R P
¥or ".::-l: .“..-.._:;
-.'?‘V;I!. :- ':_r{‘ .;-:I
o
DeepSets / Transformers GNNs Intrinsic CNNs
Permutation Permutation Isometry / Gauge choice

O

DeepMind

Geometric DL
Perspective on
Graph Neural
Networks

o

Learning on sets: Setup

e For now, assume the graph has no edges (e.g. our domain is just the set of nodes, V).

o letx € Rk be the features of node i.

e We can stack them into a node feature matrix of shape n x k:
_ T
X - (Xl 7 e o o ’ Xn) ‘

e That s, the ith row of X corresponds to x.

e Note that, by doing so, we have specified a node ordering!
o We would like the result of any neural networks to not depend on this.

O

What do we want?

X5

X4
X3

X2

O

What do we want?

X5
X4

X3

X9

O

nt?
t do we wa
Wha

X5
f X4

X3

X9

X9

X5

X4

X3

O

Permutations and permutation matrices

e It will be useful to think about the operations that change the node order
o Such operations are known as permutations (there are n! of them)
o e.g. apermutation (24,1, 3) meansy, « X, ¥, < X, Y, < X, Y, — X,.

e To stay within linear algebra, each permutation defines an n x n matrix (group action!)
o Such matrices are called permutation matrices
o They have exactly one 1in every row and column, and zeros everywhere else
o Their effect when left-multiplied is to permute the rows of X, like so:

0100 —_— X1 — —_— X9 —

oo o1 || — x —| | — x¢ —
PesrnX =11 ¢ ¢ o — oy — | | — = —
001 0] [— x4 — | — X3 — |

O

Permutation invariance

e We want to design functions f(X) over sets that will not depend on the order

e Equivalently, applying a permutation matrix shouldn't modify the result!

e We arrive at a useful notion of permutation invariance. We say that f(X) is permutation
invariant if, for all permutation matrices P:

f(PX) = f(X)

e One very generic form is the Deep Sets model (Zaheer et al, NeurlPS'17): f(X (Z W (xz)>
where v and ¢ are (learnable) functions, e.g. MLPs.

o The sum aggregation is critical' (other choices possible, e.g. max or avg)

O

Permutation equivariance

e Permutation-invariant models are a good way to obtain set-level outputs

e What if we would like answers at the node level?
o We want to still be able to identify node outputs, which a permutation-invariant
aggregator would destroy!

e We may instead seek functions that don't change the node order
o le.if we permute the nodes, it doesn't matter if we do it before or after the function!

e Accordingly, we say that f(X) is permutation equivariant if, for all permutation matrices P:

f(PX) = Pf(X)

O

Learning on graphs

Now we augment the set of nodes with edges between them.
o Thatis, we consider general E S V x V.

e We canrepresent these edges with an adjacency matrix, A, such that:

1 (i,5) €€

Aij = .
0 otherwise

Further additions (e.g. edge features) are possible but ignored for simplicity.

Our main desiderata (permutation {in,equi}variance) still hold!

O

X5
f X4

X1

X3

X9

X9

X5

X4

O

a

X5
f X4

X9

O

Permutation invariance and equivariance on graphs

e The main difference: node permutations now also accordingly act on the edges

e We need to appropriately permute both rows and columns of A
o When applying a permutation matrix P, this amounts to PAPT

e We arrive at updated definitions of suitable functions f(X, A) over graphs:

Invariance: f(PX, PAPT) — f(X, A)
Equivariance: f(PX, PAPT) Pf(X, A)

o

Locality on graphs: neighbourhoods

e Recall: it is also highly beneficial to design geometrically stable (local) equivariant layers

e Graphs give us a context for locality: a node’s neighbourhood
o For a node j, its (1-hop) neighbourhood is commonly defined as follows:

Ni=A{j:(,j) €€V (4,i) €&}

N.B. we do not explicitly consider directed edges, and often we assume i € N,

e Accordingly, we can extract the multiset of features in the neighbourhood
Xn, ={fx;: 5 e N}

and define a local function, g, as operating over this multiset: g(x, X.).

O

A recipe for graph neural networks

e Now we can construct permutation equivariant functions, f(X, A), by appropriately applying
the local function, g, over all neighbourhoods:

- g(X17XN1> T

. x2, Xpn,) —
(X A) = 9(x2, Xn)

- g(Xn, XNn) T

e To ensure equivariance, we need g to not depend on the order of the vertices in X,
o Hence, g should be permutation invariant!

A recipe for graph neural networks, visualised

XN, = {Xa)Xp, Xc, X4, Xe I} @

How to use GNNSs?

G R S B e R i N A R G Rt R o G FLi e

O

How to use GNNSs?

G R L B e Rl i N A R G Bt Ao o G FLi e

T e e M el Gt Bt Mk T Tl o et ? K

O

How to use GNNSs?

G R L B e Rl i N A R G Bt Ao o G FLi e

Node classification

Z; — f(hi)

O

How to use GNNSs?

Node classification

Z; — f(hi)

Graph classification

zg = f (Gaiev hi)

O

How to use GNNSs?

Node classification

Z; — f(hi)

Graph classification

zg = f (GBiEV hi)

G R L B e Rl i N A R G Bt Ao o G FLi e

Link prediction
z;; = f(h;,hj, e;;)

O

The three “flavours” of GNN layers

Xa Xa \ Xa -
” \(jbl) S‘bg\(?é’b
Xp < Che X Xy < 5 e = - X¢
/ Cod Bhe > QUp < alf\
Xd Xe Xq X, Xd
Convolutional Attentional

h; = ¢ | xi, P cijv(x;)

JEN;

h; =¢ (Xi, b a(Xi7Xj)¢(Xj))

JEN;

e.g. GraphSAGE, GCN, SGC e.g. MoNet, GAT, GATv2

Message-passing

h;, =¢ (Xi> @ ¢(Xi>xj))

JEN;

e.g. IN, MPNN, GraphNet

O

Architectures of interest

Perceptrons CNNs

Function regularity Translation

DeepSets / Transformers GNNs

Permutation Permutation

4
N
X & pu . >
@ ®
% (o] (o] (o]
e A
Group-CNNs LSTMs
Translation+Rotation, Time warping
Global groups

Intrinsic CNNs

Isometry / Gauge choice

o

DeepMind

Permutation
equivariant
NNs are GNNs

o

What to do when there is no graph?

e Before we go beyond permutation equivariance, a brief note on how we can use the GDL
blueprint to immediately relate permutation equivariant NNs as special cases of GNNs

e So far, we've assumed something (seemingly) very innocent: that the graph is given to us!

O

What to do when there is no graph?

e Before we go beyond permutation equivariance, a brief note on how we can use the GDL
blueprint to immediately relate permutation equivariant NNs as special cases of GNNs

e So far, we've assumed something (seemingly) very innocent: that the graph is given to us!

e In practice, the given graph may often be suboptimal for the task we're solving
o For various connectivity querying on graphs, maintaining the right set of edges can
make a difference between linear-time and (amortised) constant-time complexity!

e Taken to the extreme: what to do when there is no graph?
o Assume we're given a node feature matrix, but no adjacency

e |et's briefly cover two “special case” solutions...

O

Option 1: Assume no edges

Deep Sets (Zaheer et al,, NeurlPS'17)

No edges (set)

O

Option 2: Assume all edges

Interaction Nets (Battaglia et al., NeurlPS'16)
./V;j —_ V Relational Nets (Santoro et al, NeurlPS'17)

Let the GNN decide which edges matter!

Final CNN feature maps RN
| | I . | |
Using conv-GNNs no longer makes sense. SR f wﬁ;”:ﬁtegsgn Go-MLP
If we use attentional GNNs we recover: = =y . _|’ — fo-mLp

hi - ¢ Xy @ a(xi7 Xj)"wb(xj) T Element-wise

% sum

Does this look familiar? q
All edges (fully-connected graph) b

A note on Transformers

Transformers are Graph Neural Networks!

e Fully-connected graph
e Attentional flavour

The sequential structural information is injected through
the positional embeddings. Dropping them yields a
fully-connected GAT model.

Attention can be seen as inferring soft adjacency.

See Joshi (The Gradient; 2020).

Multi-Head Attention
1

Linear

1

Concat
AA

Scaled Dot-Product n
Attention

pl i pl

Linear Linear P11 Linear

-

V K Q @

Remark: the “truth” likely lies in between

e Empty graph ignores a potential wealth of information

e Full graph can be hard to scale (quadratic complexity, large neighbourhoods)

e Ideally, we want to infer the adjacency matrix A, then use it as edges for a GNN!

(@)

@)

Commonly termed “latent graph inference”.
Choosing edges is a discrete decision -- inherently hard to backpropagate!

e Out of scope for this lecture. Some interesting pointers include:

(@)

(@)
(@)
(@)

Neural Relational Inference (Kipf, Fetaya et al, ICML"18)
Dynamic Graph CNN (Wang et al, ACM TOG'18)
Differentiable Graph Module (Kazi et al, MICCAI'20)
Pointer Graph Networks (\Velickovic et al, NeurlPS'20)

O

Architectures of interest

4
N
I " X o] |
_’ ® ®
% (o] [¢] [0}
32 32 ﬁ m(r))"
3 6
Perceptrons CNNs Group-CNNs LSTMs
Function regularity Translation Translation+Rotation, Time warping
Global groups
PEey
] ".u ’
'1.-".' L} 'l':'r??.-;l
R)
LS TP
g LR
F' i FI: :i"h. 1.;' ’
DeepSets / Transformers GNNs Intrinsic CNNs
Permutation Permutation Isometry / Gauge choice

O

DeepMind

The Fourier
connection:
CNNs and
Spectral GNNs

o

L.ook to the Fourier transform

e The convolution theorem defines a very attractive identity:

(xy)(§) = 2(&) - 9(&) i@ = [:"x(u)e—ismu

“convolution in the time domain is multiplication in the frequency domain”

e This could give us a ‘detour’ to defining convolutions on graphs
o Pointwise multiplication is easy!
o But what are the ‘domains’ in this case?

e We will first see how graphs arise in discrete sequences (grids).

O

What'’s changed?

Grids (e.g. images, text, speech) can still be seen as a graph
o Pixels connected to immediate neighbours in the grid

e What would a graph neural network look like in this case?

e Simplifying assumption: cyclical grids (C : . C C C)

e Now every node has identical structure and degree
o Allows us to more directly define a convolution over a neighbourhood

e Also, coordinates matter: we get a much stronger translation equivariance requirement!

O

Rethinking the convolution on sequences

*for easier handling of boundary conditions

e We canimagine a sequence as a cyclical grid graph, and a convolution over it:

hy
Xa KE
X1 X9 X3

X0

X4 X5

e NB this defines a circulant matrix C([b, ¢, O, O, .., O, a]) s.t. H = f(X) = CX

b ¢ a — X9 —
a b ¢ — X7 —
f(X) =
a b c — Xp_9 —
| C b 1l L— Xpn-1 — |

O

Properties of circulants, and their eigenvectors

Circulant matrices commute!
o Thatis, C(v)C(w) = C(w)C(v), for any parameter vectors v, w.

Matrices that commute are jointly diagonalisable.
o That is, the eigenvectors of one are eigenvectors of all of them!

Conveniently, the eigenvectors of circulants are the discrete Fourier basis

1 2mil 47il 2wi(n—1)¢ T
¢g=—(1,€n,6n,...,6 n), T4

—0,1,....,n—1
vn "

This can be easily computed by studying C([0, 1, 0, O, 0, ...]), which is the shift matrix.

O

The DFT and the convolution theorem

e If we stack these Fourier basis vectors into a matrix: ® = (¢0, v vy ¢n—1)

f(X) = C(0)X = PAP*X = &

o We recover the discrete Fourier transform (DFT), as multiplication by ®*

We can now eigendecompose any circulant as C(@) = ®A®*

o Where A is a diagonal matrix of its eigenvalues, 6

The convolution theorem naturally follows:

A

0o

A

en—l

" (conjugate transpose)

P*X = ®(0 0 X)

Now, as long as we know @, we can express our convolution using rather than 8 b"

What we have covered so far
Spatial

Circulant matrix

> f(X)

C(0) A
) -
* =
elk: o5
Y Elementwise product _
X — — f(X)

Spectral o

Key idea: we don't need to know the circulant if we know its eigenvalues! Credits to Michael Bronstein

What about graphs?

e On graphs, convolutions of interest need to be more generic than circulants.

(@)

(@)

But we can still use the concept of joint eigenbases!
If we know a “graph Fourier basis”, ®, we can only focus on learning the eigenvalues.

e For grids, we wanted our convolutions to commute with shifts.

(@)

(@)
(@)
(@)

We can think of the shift matrix as an adjacency matrix of the grid

This generalises to non-grids!

For the grid convolution on n nodes, ® was always the same (n-way DFT).
Now every graph will have its own ®!

e Want our convolution to commute with A, but we cannot always eigendecompose Al

e Instead, use the graph Laplacian matrix, L = D - A, where D is the degree matrix.

(@)

Captures all adjacency properties in mathematically convenient way! @

Example Laplacian

-1 0
-1 0
0 0
-1 -1
30
0 1

Graph Fourier Transform

Assuming undirected graphs, L is:

o Symmetric (LT =L)

o Positive semi-definite (x'Lx 2 O for all x € R
o This means we will be able to eigendecompose it!

This allows us to re-express L = ®AP*, as before.
o Changing the eigenvalues in A expresses any operation that commutes with L.
o Commonly referred to as the graph Fourier transform (Bruna et al,, ICLR"14)

Now, to convolve with some feature matrix X, do as follows (the diagonal can be learnable):

f(X)

P

A

0o

D>

n—1

¢*X

O

Spectral GNNs in practice

e However, directly learning the eigenvalues is typically inappropriate:
o Not localised, doesn’t generalise to other graphs, computationally expensive, etc.

e Instead, a common solution is to make the eigenvalues related to A, the eigenvalues of L
o Commonly by a degree-k polynomial function, p,
o Yielding f(x) = ®pp(A)®*x = pi(L)x
o Popular choices include:
m Cubic splines (Bruna et al, ICLR14)
m Chebyshev polynomials (Defferrard et al, NeurlPS"16)
m Cayley polynomials (Levie et al, Trans. Sig. Proc.'18)

e NB by using a polynomial in L, we have defined a conv-GNN!
o With coefficients defined by C; = (pk(L))ij
o Most efficient spectral approaches “spatialise” themselves in similar ways
o The “spatial-spectral” divide is often not really a divide!

O

The Transformer positional encodings and beyond

Lastly, another look at Transformers.

e Transformers signal that the input is a sequence of words by using positional embeddings
o Sines/cosines sampled depending on position PE(pos.2i) = Sm(pos/looo()%/dmoden)

PE(pos,2i+1) = Cos(pos/lo()oO?i/dmoden)
e Very similar to the DFT eigenvectors!

e Positional embeddings could hence be interpreted as eigenvectors of the grid graph
o Which is the only assumed ‘underlying’ connectivity between the words

e We can use this idea to run Transformers over general graph structures!
o Just feed some eigenvectors of the graph Laplacian (columns of ®)
o See the Graph Transformer from Dwivedi & Bresson (2021) @
o Rapidly emerging area of research!

Architectures of interest

4
N
32 2 = A >
_’ ® ®
% (o] [o] (o]
32 32 ﬁ m(r))-’
3
Perceptrons CNNs Group-CNNs LSTMs
Function regularity Translation Translation+Rotation, Time warping
Global groups
PEey
.l = ".| @
LB 5"“'“'-?-“‘ r
e S LT

DeepSets / Transformers
Permutation

GNNs

Permutation

Intrinsic CNNs

Isometry / Gauge choice

O

DeepMind

The Group
connection:
Spherical CNNs

o

Convolutions in the Euclidean domain

*NB all our findings will be applicable to discretisations
e Now consider the continuous Euclidean domain = R, where convolution takes the form:

(x 1) (u)

(2, Ty = /R sl)do

(Tyz)(u) = 2(u —v)

e The output of the grid convolution is another function on the grid
o But this is not the case for every domain!

e Now we can see how to generalise the convolution to more general &

O

Group convolutions

e We can define inner products on general domains : (x, 1) = / z(u)(u)du
Q

(@ *¥)(u) = (z, Tup) = / 2(v)(u+v)dy Grids

R

(%) (5) = (z, p(a)p) = / s(w)b(g- u)du Groups

Q

e NB: the group convolution is, generally, a function over elements of G!!!
o It was also a real-input function under the translation group...
o ..because the group itself is also ® = R (scalar shifts!!!)

O

Example: Spherical convolution

e Consider signal defined on a sphere, Q = S?
o Very relevant, e.g. for earth maps, astrophysics, ...

e We want to be rotation equivariant
o This means using the rotation group ® = SO(3)
o Image CNNs cannot support this!

o

Example: Spherical convolution

Consider signal defined on a sphere, Q = S?
o Very relevant, e.g. for earth maps, astrophysics, ...

We want to be rotation equivariant
o This means using the rotation group ® = SO(3)

e We can represent the points on a sphere with 3-dim unit vectors, u
o The group action (rotation) transforms it with a 3 x 3 orthogonal matrix, R

We recover our spherical convolution:

zxP)(R) = | z(w)y(R 1u)du
()(R) o (w)y() o

Example: SO(3) convolution (zx9)(R) = /S z(W$(R™u)du

The output of a spherical convolution is a function over all 3D rotations in SO(3)
o So, to “stack more layers”, we need to define a convolution over Q = ® = SO(3)

e Luckily, our blueprint still works: we can define a ®-action over elements of & by function
composition: (g, h) — gh

e The corresponding group action can be defined as follows: (p(g)az) ([]) = Sc(g_l[))
e Consequently, we can build G-equivariant layers over 6!

e Start with spherical convolution at the input layer, then stack SO(3)-convolutions!

O

Example: SO(3) convolution, cont’d

(2%)(R) = /S o(w)y(R " u)du

SO(3) group actions defined by 3x3 rotation matrices R

Hence, group action (p(g)l’) (f)) = w(g_l h) is expressible as x(R'Q)
o for some two rotation matrices R and Q.

Recall the expression for the group convolution: (z*x9)(g) = (z,p(9)¥) = /Qx(u)lﬂ(g_lu)du

Putting it all together, we obtain the following two-layer convolution over spheres:

(w %) * §)(R) = / (2% 9)(QS(R1Q)dQ

SO(3)

This forms the essence of Spherical CNNs (Cohen et al, ICLR"18) @

Relationship to GNNs

e The spherical CNN can still be related to GNNs
o In practice, the sphere is discretised and the filter v is local
o The non-zero elements of y are the neighbourhood of point u
o The integration is akin to message passing! (as many points will have zero product)

(zxy)R) = | z(u)yp(R™'u)du

SQ

e Further, the ®-convolution described here works over any global symmetry group ®

O

Caveat 1: Tractability

The G-convolution described here works over any symmetry group

But it is only tractable for very small groups
o e.g. SO(3) was describable with a 3x3 orthogonal matrices

It may be tempting to apply this idea to graphs
o But the permutation group 2 has n! entries to maintain

This hints at existence of “graph convolutions” not captured by our ‘flavours’
o (though it likely captures the most tractable ones:))

Some of these convolutions may tradeoff expressivity for stability / complexity
o Suggests a “way out” of the Weisfeiler-Lehman expressivity limit...

O

Caveat 2: Homogeneity

e Both the spherical and the circular grid domains are homogeneous
e For any two points u, v € , there exists some g € ¢ s.t.gu=V

e Inasense, “all points look the same”
o This does not hold for graphs!

e This allowed ‘sliding’ filters across €2 to build convolutions

e What can we do in the more general case?

O

Architectures of interest

4
N
32 2 = >
— p:
(o] [g] [o]
32 32 ﬁ :(:))-’
3
Perceptrons CNNs Group-CNNs LSTMs
Function regularity Translation Translation+Rotation, Time warping
Global groups
PEey
] ".u p

"E. L)
i

DeepSets / Transformers

Permutation

GNNs

Permutation

Intrinsic CNNs

Isometry / Gauge choice

O

DeepMind

Geometric
Graphs,
Geodesics and
Gauges

o

Geometric graphs

e Thus far, we have assumed our graphs to be a discrete, unordered, set of nodes and edges

e In many cases, this is not the entire story!
o The graph, in fact, may often be endowed with some spatial geometry
o It will be useful for us to exploit this geometry!

e Molecules are a classical case (with their three-dimensional conformers)

o

Learning over geometric graphs

e Simplified setup: nodes endowed with features, f and coordinates x € RS

e An equivariant message passing layer transforms them separately
o Yielding updated features ' and coordinates x’

e We can now express a group of symmetries & we would like to be resistant to
o Inthe case of molecules, a standard group is the Euclidean group, E(3)
o Roto-translations and reflections

e For any 3D orthogonal matrix R and translation vector b, we define a group action g € E(3):

p(g)x = Rx +b

and applying them to coordinates typically should not affect how features are processed! @

E(n)-equivariant GNNs

e As for permutation equivariance, there exist many GNNs that obey E(n)-equivariance

One elegant solution was exposed by Satorras et al. (ICML'21):

ff; = ¢ fua @ wf(fuy fva ”xu - XU||2))
’UENu
X:,, = Xyt Z(xu - X'v)wc(fm fv7 HXU - X’U||2)
vFEU
The actions of E(n) do not change distance between nodes (they are isometric)

o Henceif x, < Rx +b..
o f' does not change, and x’ < Rx’ + b, as expected!

Hence, this layer is E(n)-equivariant over scalar features f_

o

Vector-structured features

e However, what if some of the node features (fu) depend on the geometry?

o e.g. they could be vector forces
o Rotating the molecule should rotate these vectors too!

e The model on the previous slide does not take this into account!

¥
¥
¥

!/
NN~y YY)
R

/4= ~~NNN

T -
T -
T -
. - -

K ¥ e —~xOROROROX X

O

Vector-structured features

e However, what if some of the node features (fu) depend on the geometry?
o e.g. they could be vector forces
o Rotating the molecule should rotate these vectors too!

The model on the previous slide does not take this into account!

Satorras et al. do propose a variant of their model that works with vectors:

vitt =6, (B)) vi+ O (x! — %) ¢, (my)
J#t

I+1

Xl+1 ;

I
i =X, TV

But the issue will keep re-appearing as we “tensor up” our features!
o Is there a way to talk about the general “set of solutions” for E(n)-equivariance?

O

Towards a general solution: Tensor Field Networks

e We actually can factorise the group action of SE(3) on inputs of any tensor order /!

p(9) = EBDe

where D, are the Wigner D-matrices, and Q is a g-specific change-of-basis matrix.

e This can be exploited to write a generic SE(3)-equivariant model (the TFN)

out i /Wek(x Xl)fk (X dX - Z Z Wek(xj Xl) m]’

k>O N / k>0 5=
k—¢ convolutlon

node J— node 1 message

k+¢

WHE = S SFIRDWEW, where W) = 3 Yanm(/IxDQ,

J=|k—£| m=—J

where the matrices W, are precomputed based on the above parametrisation

O

SE(3)-Transformers (Fuchs, Worrall, et al., NeurIPS'20)

Restrict TFNs to only act over neighbourhood N.. Also adds Transformer attention.

e £k
fgut,i — W flen i T S: S: Qg WV (Xj — Xl)fﬁl,]J

, R N~
k:ZO] ENZ'\’L @ attention @ value message

(3 self-interaction

Tk,
Qij = Xl])T z-j/)’ @ZWQ in,i @ZW (%; = %) ;-

2 jreni\i ©xP(g; K £>0 k>0 ¢>0 k>0

Gives all possible equivariant (attentional) GNNs, but we still need to pre-compute W,

o

SE(3)-Transformers (Fuchs, Worrall, ef al., NeurIPS’20)

Step 1: Get nearest neighbours and relative positions

Step 3: Propagate queries, keys, and values to edges
vij =Wy (x; - x)
kij = W (x; —xi) f

a; = Wof;

Step 2: Get SO(3)-equivariant weight matrices

@ % 98

Clebsch- Radial Neural Spherical
Gordon Coeff. Network Harmonics

Q% PHllel) ()

> 4
Y
Matrix W consists of blocks mapping between degrees

Step 4: Compute attention and aggregate

exp(q; kij)
2 exp(q;' kiy)

ij —

O

Manifolds

e More generally, we can define manifold domains
o Highly relevant e.g. for computer graphics,
protein design, fMRI processing

e In fact, manifold-oriented models end up not at all
dissimilar to equivariant message passing!

e Detailed exposition and extended theory are
deferred to the draft book

O

Manifolds

e More generally, we can define manifold domains
o Highly relevant e.g. for computer graphics,
protein design, fMRI processing

e In fact, manifold-oriented models end up not at all
dissimilar to equivariant message passing!

e Key concept: parallel transport, which allows us
to transport tangent vectors along a curve to
preserve direction

o NB.Itis path-dependent (e.g. BC # ABC)

O

Manifolds

e More generally, we can define manifold domains
o Highly relevant e.g. for computer graphics,
protein design, fMRI processing

e In fact, manifold-oriented models end up not at all
dissimilar to equivariant message passing!

e Key concept: parallel transport, which allows us
to transport tangent vectors along a curve to
preserve direction

o NB.Itis path-dependent

e Now we can define (with some caveats) “sliding” a
filter along more general surfaces

Manifolds

e More generally, we can define manifold domains
o Highly relevant e.g. for computer graphics,
protein design, fMRI processing

e In fact, manifold-oriented models end up not at all
dissimilar to equivariant message passing!

e Key concept: parallel transport, which allows us
to transport tangent vectors along a curve to
preserve direction

o NB.Itis path-dependent

e Now we can define (with some caveats) “sliding” a
filter along more general surfaces

Manifolds

e More generally, we can define manifold domains
o Highly relevant e.g. for computer graphics,
protein design, fMRI processing

e In fact, manifold-oriented models end up not at all
dissimilar to equivariant message passing!

e Key concept: parallel transport, which allows us
to transport tangent vectors along a curve to
preserve direction

o NB.Itis path-dependent

e Now we can define (with some caveats) “sliding” a
filter along more general surfaces

Some architectures recovered from blueprint

e Geodesic CNN (Masci et al, CVPR15)

e Gauge-equivariant Mesh CNN (de Haan et al, ICLR'21)

pick [gauge pick | gauge
X R(ht
U 1T Ggbp)U
@q ~
\ . R(ges) \ | P

(a) Parallel transport on a flat mesh. (b) Parallel transport along an edge of a general mesh.

Some architectures recovered from blueprint

e Geodesic CNN (Masci et al, CVPR15)

e Gauge-equivariant Mesh CNN (de Haan et al, ICLR'21)
o GEM-CNNs feel a lot like message passing! (with precomputed transport matrices)

h, = Ogs Xy, + Z @neigh(ﬁuv)p(gv—)u)xv
vENY

O

Architectures of interest

4
N
32 2 = >
— p:
(o] [g] [o]
32 32 ﬁ :(:))-’
3
Perceptrons CNNs Group-CNNs LSTMs
Function regularity Translation Translation+Rotation, Time warping
Global groups
PEey
] ".u p

"E. L)
i

DeepSets / Transformers

Permutation

GNNs

Permutation

Intrinsic CNNs

Isometry / Gauge choice

O

a

DeepMind

Further
resources

o

geometricdeeplearning.com

GEOMETRIC DEEP LEARNING

Grids, Groups, Graphs, Geodesics, and Gauges

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veli¢kovié¢

Read the paper Read the blog post Watch the ICLR'21 keynote
Watch the Erlangen keynote Follow the Lectures (AMMI 2021)

O

156-page proto book on arXiv

Geometric Deep Learning
Grids, Groups, Graphes,
Geodesics, and Gauges

Michael M. Bronstein!, Joan Bruna?, Taco Cohen3, Petar Veli¢kovié

May 4, 2021

O

African Master’s in Machine Intelligence course (12h)

All lecture recordings

Lecture 1: Introduction

Lecture 2: High-Dimensional Learning
Lecture 3: Geometric Priors |

Lecture 4: Geometric Priors Il

Lecture 5: Graphs & Sets |

Lecture 6: Graphs & Sets I/

Lecture 7: Grids

Lecture 8: Groups

Lecture 9: Geodesics & Manifolds

Lecture 10: Gauges

Lecture 11: Sequences & Time
Warping

Lecture 12: Conclusions

Michael M.
Bronstein

Joan Bruna

Taco Cohen

Joan Bruna

Petar Veli¢kovié¢

Petar Veli¢kovié¢

Joan Bruna

Taco Cohen

Michael M.
Bronstein

Taco Cohen

Petar Veli¢kovié

Michael M.
Bronstein

Recording

Recording
Recording
Recording
Recording
Recording
Recording
Recording

Recording

Recording

Recording

Recording

Slides

Slides

Slides

Slides

Slides

Slides

Slides

Slides

Slides

Slides

Slides

Slides

O

DeepMind

Thank you!

Questions / Feedback?

petarv@deepmind.com | https://petar-v.com

With many thanks to Joan Bruna, Michael Bronstein and Taco Cohen

O

mailto:petarv@google.com
https://petar-v.com

