Unsupervised Learning with Graph Neural Networks

Petar Veličković

ACDL 2019 Satellite Workshop on Graph Neural Networks 22 July 2019

Motivation

- In this talk: using graph neural networks for unsupervised learning.
- Very important direction: *most graphs in the wild are unlabeled!*
 - However, still largely <u>understudied</u>.
- Outline:
 - Graph neural networks recap (GCN/GAT/MPNN);
 - Random-walk objectives (VGAE);
 - Mutual information maximisation (DGI);
 - Latent graph inference (NRI).

Graph Neural Networks

Graphs are everywhere!

Unsupervised Learning with GNNs – Petar Veličković

Mathematical setup

- **Graph**: G = (V, E)
- Node features: $\mathbf{H} = \{ \vec{h}_1, \vec{h}_2, \dots, \vec{h}_N \}; \qquad \vec{h}_i \in \mathbb{R}^F$
- Adjacency matrix: $\mathbf{A} \in \mathbb{R}^{N imes N}$
- Neighbourhoods: $\mathcal{N}_i = \{j \mid i = j \lor \mathbf{A}_{ij} \neq 0\}$

• (Edge features):
$$\vec{e}_{ij} \in \mathbb{R}^{F'}$$
; $(i,j) \in E$

Graph Convolutional Network

Message-passing neural networks

- Want **permutation invariance** => aggregate (e.g. sum) across \mathcal{N}_i .
- Generic graph neural network (GNN) layer usually expressed as:

$$\vec{h}'_i = \sigma \left(\sum_{i \in \mathcal{N}_j} f(\vec{h}_i, \vec{h}_j, \vec{e}_{ij}) \right)$$

where *f* is a (learnable) function, computing **message** from j to i.

• Message-passing neural network (MPNN; Gilmer et al., ICML 2017).

Simpler GNN variants

• Graph convolutional network (GCN; Kipf and Welling, ICLR 2017):

$$\vec{h}'_i = \sigma \left(\sum_{i \in \mathcal{N}_j} \frac{1}{\sqrt{|\mathcal{N}_i| |\mathcal{N}_j|}} \mathbf{W} \vec{h}_j \right)$$

• Graph attention network (GAT; Veličković et al., ICLR 2018):

$$\vec{h}_i' = \sigma \left(\sum_{i \in \mathcal{N}_j} a(\vec{h}_i, \vec{h}_j, \vec{e}_{ij}) \mathbf{W} \vec{h}_j \right)$$

Unsupervised Learning with GNNs - Petar Veličković

Random-walk objectives

Unsupervised learning setup

- The GNN parameters can be optimised by a **supervision** signal.
- But what if we have no **labels** / task is **unknown**?
- Want: "good" node* features that adapt to new tasks well.

*if we have good node features, can easily derive good edge/graph features if required.

Structure preservation

- What is in a "good" representation?
- Graphs carry interesting **structure**!
 - Good node representations should preserve it.
- Simplest notion of graph structure is an *edge*.
 - Features of node *i* and *j* should be predictive of existence of edge (*i*,*j*)!
- Yields a straightforward unsupervised objective...

Link prediction

- Hold out some edges from the graph.
- Use a GNN to obtain node representations, \vec{h}_i .

• Optimise the GNN such that
$$\vec{h}_i$$
 and \vec{h}_j are predictive of whether $(i, j) \in E$:

$$\sum_{(i,j)\in E} \log \sigma(\vec{h}_i^T \vec{h}_j) + \sum_{(i,j)\notin E} \log \left(1 - \sigma(\vec{h}_i^T \vec{h}_j)\right)$$

• (Variational) graph auto-encoders (**VGAE**; Kipf and Welling, NIPS BDL 2016)

Random-walk objectives

- The link-prediction objective is a special case of **random-walk objectives**.
- Predictive of whether *i* and *j* co-occur in a (short) random walk.
- Dominated unsupervised graph representation learning prior to GNNs!
 DeepWalk, node2vec, LINE, ...
- Combined with GNNs in **GraphSAGE** (Hamilton et al., NIPS 2017).

Mutual information maximisation

Combining GNNs and local objectives

- Random-walk objectives inherently capture **local** similarities.
- But a GNN *summarises local patches* of the graph!
 - Neighbouring nodes tend to highly overlap in n-step neighbourhoods;
 - Therefore, a GNN *enforces* similar features for neighbouring nodes by **design**.
- Random walk-objectives can fail to provide useful signal to GNNs!
 At times, matched by a random-init GNN! (Veličković et al., ICLR 2019)
- We require a move to global objectives...

Global unsupervised objectives

• Want the model to discover interesting structural similarities *anywhere*!

Hypothesis: similar structural roles => likely to be related
 regardless of path distance!

Mutual information maximisation

- A natural way to capture similarities is optimising **mutual information**.
- Attempt to simultaneously optimise $MI(\vec{h}_i, \vec{h}_j)$ for all pairs of nodes... • The model will "discover" which pairs can be best compressed.
- Scalable proxy: optimise $MI(\vec{h}_i, \vec{s})$, where \vec{s} is a graph summary vector.
- Yielded great returns on images (Deep InfoMax; Hjelm et al., ICLR 2019).

How to optimise MI?

- In neural networks, MI typically optimised using a *discriminator*.
 - Binary classifier, determining whether \vec{h}_i and \vec{S} are related.
 - e.g. "Does node *i* belong in the graph summarised by \vec{S} ?"
- Requires *negative examples*: nodes not belonging to the graph.
 O But often only have one graph!
- Solution: explicit **corruption function** to produce *negative graphs*.

$$\frac{1}{N+M}\mathbb{E}_{(\mathbf{X},\mathbf{A})}\left[\sum_{i=1}^{N}\log\mathcal{D}\left(\vec{h}_{i},\vec{s}\right)+\mathbb{E}_{(\widetilde{\mathbf{X}},\widetilde{\mathbf{A}})}\left[\sum_{j=1}^{M}\log\left(1-\mathcal{D}\left(\vec{\widetilde{h}}_{j},\vec{s}\right)\right)\right]\right]$$

Deep Graph Infomax (DGI)

Veličković et al., ICLR 2019

Competitive results when combined with GraphSAGE-style subsampling

Latent graph inference

Latent graph inference

- All techniques so far require a graph to be **provided** as input...
- But can we always see it?
- Could use a fully-connected graph, but...
 - not representative of interaction "modes";
 - does not scale!
- Latent graph inference represents a key challenge for graph neural networks to tackle.

Problem setup

Neural Relational Inference (NRI; Kipf, Fetaya et al., ICML 2018)

Learning the interaction graph

- Use a **downstream task** to drive graph construction:
 - First, infer the graph (**encoder** network);
 - Then, use the graph to make predictions (**decoder** network).
 - Optimise the entire system end-to-end through predictive loss.
- In the NRI paper:
 - Inputs are particle **trajectories**;
 - Want to predict **future positions**. 0.5
 - Infer **physics interactions**.

The NRI encoder

- Assume upfront **K** different interaction types
 - (e.g. spring, charged, none...)
- Run an MPNN over the complete graph \circ This will yield node as well as **edge** features, $\vec{m}_{ij} = f(\vec{h}_i, \vec{h}_j)$
- Learn a K-way classifier over each edge to infer interaction type
 Sample from its predictions to obtain the latent graph

$$e_{ij} \sim \text{Categorical}(\text{softmax}(\mathbf{W}\vec{m}_{ij}))$$

The NRI decoder

- Run another MPNN over the latent graph
- Predict the desired output using the node representations
- Optimise the entire system through gradient descent on the output error
 o (e.g. MSE in the case of particle trajectories)
- Problem: cannot backpropagate through the sampling operation!
 - Use the **Gumbel softmax** trick at training time.

The NRI architecture

Concluding remarks

- NRI is an important step towards latent graph inference
- Main limitation: does not scale to large graphs!
 - Still requires message passing on a complete graph...
 - In practice, should not be required!
- Plentiful improvements possible, as well as necessary

Thank you! Questions?