
Keeping our graphs attentive
Petar Veličković
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Introduction

I In this talk, I will present a survey of recent developments in
applying attentive mechanisms to improving the exploitation
of nontrivial graph structure in data.

I This will involve a discussion of:
I Graph Attention Networks.
I Subsequently released generalisations and improvements

(EAGCN, GaAN, DeepInf, Attention Solves your TSP).
I Applications to relational reasoning, multi-agent interaction,

cortical mesh segmentation and paratope prediction.
I An ongoing project in graph classification (with Thomas Kipf).



Graphs are everywhere!



Mathematical formulation

I We will focus on the node classification problem:
I Input: a matrix of node features, F ∈ RN×F , with F features in

each of the N nodes, and an adjacency matrix, A ∈ RN×N .
I Output: a matrix of node class probabilities, Y ∈ RN×C , such

that Yij = P(Node i ∈ Class j).

I We also assume, for simplicity, that the edges are unweighted
and undirected:

I That is, Aij = Aji =

{
1 i ↔ j
0 otherwise

but many algorithms we will cover are capable of generalising
to weighted and directed edges.

I There are two main kinds of learning tasks in this space. . .



Transductive learning

Training algorithm sees all features (including test nodes)!



Inductive learning

I Now, the algorithm does not have access to all nodes upfront!

I This often implies that either:
I Test nodes are (incrementally) inserted into training graphs;
I Test graphs are disjoint and completely unseen!

I A much harder learning problem (requires generalising across
arbitrary graph structures), and many transductive methods will
be inappropriate for inductive problems!



Explicit graph neural network methodologies

I We will restrict our attention solely to methods that directly
leverage the graph structure when extracting features.

I Main idea: Compute node representations ~hi based on the
initial features ~fi and the graph structure, and then use ~hi to
classify each node independently.



The silver bullet—a convolutional layer

I It would be, in particular, highly appropriate if we could
somehow generalise the convolutional operator (as used in
CNNs) to operate on arbitrary graphs!

I A “common framework” for many of the approaches to be listed
now has been presented in “Neural Message Passing for
Quantum Chemistry”, by Gilmer et al. (ICML 2017).



Convolution on images
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Challenges with graph convolutions

I Desirable properties for a graph convolutional layer:
I Computational and storage efficiency (∼ O(V + E));
I Fixed number of parameters (independent of input size);
I Localisation (acts on a local neighbourhood of a node);
I Specifying different importances to different neighbours;
I Applicability to inductive problems.

I Fortunately, images have a highly rigid and regular connectivity
pattern (each pixel “connected” to its eight neighbouring
pixels), making such an operator trivial to deploy (as a small
kernel matrix which is slided across).

I Arbitrary graphs are a much harder challenge!



Spectral graph convolution

I A large class of popular approaches attempts to define a
convolutional operation by operating on the graph in the
spectral domain, leveraging the convolution theorem.

I These approaches utilise the graph Laplacian matrix, L,
defined as L = D− A, where D is the degree matrix (diagonal
matrix with Dii = deg(i)) and A is the adjacency matrix.

I Alternately, we may use the normalised graph Laplacian,
L̃ = I− D−1/2AD−1/2.



Graph Laplacian example

1 2 3

4

5

6 L =



2 −1 0 0 −1 0
−1 3 −1 0 −1 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1
−1 −1 0 −1 3 0
0 0 0 −1 0 1





Graph Fourier Transform

I The Laplacian is symmetric and positive semi-definite; we can
therefore diagonalise it as L = UΛUT , where Λ is a diagonal
matrix of its eigenvalues.

I This means that multiplying the feature matrix by UT allows us
to enter the spectral domain for the graph! Therein, convolution
just amounts to pointwise multiplication.

I This “Graph Fourier Transform” is the essence of the work of
Bruna et al. (ICLR 2014).



Graph Fourier Transform, cont’d

I To convolve two signals using the convolution theorem:

conv(~x , ~y) = U
(

UT~x � UT~y
)

I Therefore, a learnable convolutional layer amounts to:

~h′i = U
(
~w � UT W~hi

)
where ~w is a learnable vector of weights, and W ∈ RF ′×F is a
shared, learnable, feature transformation.

I Downsides:
I Computing U is O(V 3)—infeasible for large graphs!
I One independent weight per node—not fixed!
I Not localised!



Chebyshev networks

I These issues have been overcome by ChebyNets, the work of
Defferrard et al. (NIPS 2016).

I Rather than computing the Fourier transform, use the related
family of Chebyshev polynomials of order k , Tk :

~h′i =
K∑

k=0

wkTk (L)W~hi

I These polynomials have a recursive definition, highly
simplifying the computation:

T0(x) = 1 T1(x) = x Tk (x) = 2xTk−1(x)− Tk−2(x)



Properties of Chebyshev networks

I Owing to its recursive definition, we can compute the output
iteratively as

∑K
k=0 wk~tk , where:

~t0 = W~hi ~t1 = LW~hi ~tk = 2L~tk−1 −~tk−2

where each step constitutes a sparse multiplication with L.

I The number of parameters is fixed (equal to K weights).

I Note that Tk (L) will be a (weighted) sum of all powers of L up
to Lk . This means that Tk (L)ij = 0 if dist(i , j) > k !
=⇒ The operator is K-localised!



Properties of Chebyshev networks, cont’d

I To avoid issues with exploding or vanishing signals, typically a
scaled version of L is fed into the algorithm:

L̃ =
2L
λmax

− I

where λmax is the largest eigenvalue of L.

I This constrains all eigenvalues to lie in the range [−1,1],
therefore making the norm of all results controllable.

I Major limitation: unable to specify different weights to
different nodes in a neighbourhood! All k -hop neighbours will
receive weight wk + wk+1 + · · ·+ wK .



Limited filters

Going back to the image scenario, under the assumption that each
pixel of an image is connected to its immediate four neighbours, this
would constrain our 3× 3 convolutional kernel to be of the form: w2 w1 + w2 w2

w1 + w2 w0 + w1 + w2 w1 + w2
w2 w1 + w2 w2


severely limiting the variety of patterns that can be usefully
extracted from the image.



GCNs

I The Graph Convolutional Network (GCN) of Kipf & Welling
(ICLR 2017) further fine-tunes the Chebyshev framework.

I Setting K = 1 and assuming λmax ≈ 2 allows for redefining a
single convolutional layer as simply:

~h′i = D̃−1/2ÃD̃−1/2W~hi

which significantly improves computational performance on
larger graphs and predictive power on small training sets.

I However, the previous issue is still there. . .



Applicability to inductive problems

I Another fundamental constraint of all spectral-based methods
is that the learnt filter weights are assuming a particular, fixed,
graph Laplacian.

I This makes them theoretically inadequate for arbitrary
inductive problems!

I We have to move on to non-spectral approaches. . .



Molecular fingerprinting networks

I An early notable approach towards such methods is the work
of Duvenaud et al. (NIPS 2015).

I Here, the method adapts to processing with various degrees by
learning a separate weight matrix Hd for each node degree d .

I The authors dealt with an extremely specific domain problem
(molecular fingerprinting), where node degrees could never
exceed five; this does not scale to graphs with very wide
degree distributions.



GraphSAGE

I Conversely, the recently-published GraphSAGE model by
Hamilton et al. (NIPS 2017) aims to restrict every degree to
be the same (by sampling a fixed-size set of neighbours of
every node, during both training and inference).

I Inherently drops relevant data—limiting the set of neighbours
visible to the algorithm.

I Impressive performance was achieved across a variety of
inductive graph problems. However, the best results were often
achieved with an LSTM-based aggregator, which is unlikely to
be optimal.



Reminder: Self-attention

I A recent development in attentional mechanisms concerns
self-attention; a scenario where the input attends over itself:

αij = a(~hi , ~hj)

~h′i =
∑

j

softmaxj(αij)~hj

where a(~x , ~y) is a neural network (the attention mechanism).

I Critically, this is parallelisable across all input positions!

I Vaswani et al. (NIPS 2017) have successfully demonstrated
that this operation is self-sufficient for achieving state-of-the-art
on machine translation.



Graph Attention Networks

I My ICLR 2018 publication, proposing Graph Attention
Networks (GATs), leverages exactly the self-attention operator!

I In its naı̈ve form, the operator would compute attention
coefficients over all pairs of nodes.

I To inject the graph structure into the model, we restrict the
model to only attend over a node’s neighbourhood when
computing its coefficient!



GAT equations

I To recap, a single attention head of a GAT model performs the
following computation:

eij = a(~hi , ~hj)

αij =
exp(eij)∑

k∈Ni
exp(eik )

~h′i = σ

∑
j∈Ni

αijW~hj


I Some further optimisations (like multi-head attention and

dropout on the αij values) help further stabilise and regularise
the model.



A single GAT step, visualised
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GAT analysis

I Computationally efficient: attention computation can be
parallelised across all edges of the graph, and aggregation
across all nodes!

I Storage efficient—a sparse version does not require storing
more than O(V + E) entries anywhere;

I Fixed number of parameters (dependent only on the desirable
feature count, not on the node count);

I Trivially localised (as we aggregate only over
neighbourhoods);

I Allows for (implicitly) specifying different importances to
different neighbours.

I Readily applicable to inductive problems (as it is a shared
edge-wise mechanism)!



GAT performance

I It seems that we have finally satisfied all of the major
requirements for our convolution!

I How well does it perform?



Datasets under study

Summary of the datasets used in our experiments.

Transductive Inductive
Cora Citeseer Pubmed PPI

# Nodes 2708 3327 19717 56944 (24 graphs)
# Edges 5429 4732 44338 818716
# Features/Node 1433 3703 500 50
# Classes 7 6 3 121 (multilabel)
# Training Nodes 140 120 60 44906 (20 graphs)
# Validation Nodes 500 500 500 6514 (2 graphs)
# Test Nodes 1000 1000 1000 5524 (2 graphs)



Results on Cora/Citeseer/Pubmed

Transductive

Method Cora Citeseer Pubmed

MLP 55.1% 46.5% 71.4%
ManiReg 59.5% 60.1% 70.7%
SemiEmb 59.0% 59.6% 71.7%
LP 68.0% 45.3% 63.0%
DeepWalk 67.2% 43.2% 65.3%
ICA 75.1% 69.1% 73.9%
Planetoid 75.7% 64.7% 77.2%
Chebyshev 81.2% 69.8% 74.4%
GCN 81.5% 70.3% 79.0%
MoNet 81.7 ± 0.5% — 78.8 ± 0.3%

GCN-64∗ 81.4 ± 0.5% 70.9 ± 0.5% 79.0 ± 0.3%
GAT (ours) 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3%



Results on PPI

Inductive

Method PPI

Random 0.396
MLP 0.422
GraphSAGE-GCN 0.500
GraphSAGE-mean 0.598
GraphSAGE-LSTM 0.612
GraphSAGE-pool 0.600

GraphSAGE∗ 0.768
Const-GAT (ours) 0.934 ± 0.006
GAT (ours) 0.973 ± 0.002

Here, Const-GAT is a GCN-like inductive model.



t-SNE + attention coefficients on Cora



Incorporating edge context

I The attentional setup of GAT treats each edge equally.

I This will not be appropriate for inputs such as chemical
compounds, wherein the same atom can possess identical
neighbourhoods but with different bonds!



EAGCN (Shang et al., 2018)

I The edge context was incorporated for the first time in the edge
attention-based multi-relational GCN (EAGCN) model.

I Assume that there are K different edge attributes (e.g. atom
pair type, bond order. . . ) and that the i-th attribute has di
possible values.

I A separate attention coefficient αij is learned for every value of
every attribute (i ∈ {1, . . . ,K}, j ∈ {1, . . .di}), as a simple
scalar embedding.



EAGCN attention mechanism

I These embeddings then form the (unnormalised) attention
coefficient matrices Ai for each edge attribute i :

Ai
st =

{
αij s → t of type j in attr. i
−∞ s 6→ t

which are then softmax-normalised:

Ãi
st =

exp
(
Ai

st
)∑

k exp
(
Ai

kt

)
I We can then use each of these as a separate attention head,

and e.g. concatenate their outputs (for node features H):

H′ =
K

‖
i=1

σ
(

ÃiHW
)



EAGCN in action: computing Ai



EAGCN in action: single layer

Evaluated on molecular property classification and regression,
outperforming several standard graph-based baselines.



GaAN (Zhang et al., 2018)

I The multi-head attention of GAT treats each attention head
equally. However, not all heads necessarily convey equally
important or meaningful feature spaces.

I The Gated Attention Network (GaAN) architecture introduces a
gating mechanism on top of a key-value attention (as in
Vaswani et al.), to control the impact of each output of each
attention head.

I Evaluated on inductive node classification (Reddit/PPI) and
traffic speed forecasting (METR-LA), outperforming many
challenging baselines.



GaAN dataflow

I Assume we have node features ~hi and node reference vectors
~zj (useful to decouple when working on temporal graphs).

I First, derive queries, keys and values for the attention:

~qi = Wq~hi
~ki = Wk~zi ~vi = Wv~zi

I Now, use the queries and keys to derive coefficients:

αij =
exp

(
〈~qi , ~kj〉

)
∑

m∈Ni
exp

(
〈~qi , ~km〉

)



GaAN dataflow, cont’d

I At the same time, compute the gating for each node (using
max-pool and average-pool information):

~gi = σ

(
Wg

[
~hi ‖ max

j∈Ni

Wm~zj ‖
∑

j∈Ni
~zj

|Ni |

])

I Finally, attend over the values and apply the gating (distributed
over K independent heads)—including a skip connection:

~h′i = σ

Wo

~hi ‖
K

‖
k=1

~g(k)
i �

∑
j∈Ni

α
(k)
ij ~v (k)

j





GaAN in action



DeepInf (Qiu et al., 2018)

I Modelling influence locality within large social networks.

I Let st
u ∈ {0,1} denote whether node u has performed an

action at any time t ′ < t .

I Aim to predict whether node v ever performs the action (s+∞
v ),

given the action statuses of all of its r -hop neighbours at time t .

I First study where attentional mechanisms (such as GAT)
appear to be necessary for surpassing baseline approaches
(such as logistic regression or SVMs).



DeepInf pipeline

Datasets:
I OAG (network: coauthorship; action: citation)
I Digg (network: friendship; action: vote up)
I Twitter (network: follow; action: retweet “Higgs”)
I Weibo (network: follow; action: retweet)



DeepInf: qualitative analysis of attention



Attention Solves Your TSP (Kool & Welling, 2018)

I Successfully demonstrated the viability of attentional
mechanisms on graphs to solving combinatorial problems
(Euclidean TSP—each node is specified by (x , y) coordinates).

I A decoder computes the probability distribution for the next
node to visit, πt , based on:

I a fixed-size encoding of the graph, ~hG (obtained by an encoder);
I the embeddings of the first and last visited node: ~hπ1 , ~hπt−1 .
I the embeddings ~hi of all nodes i still in the graph.

I Then this probability distribution is optimised using
REINFORCE (with a greedy rollout baseline).



Attention Solves Your TSP: Encoder

I Uses the key-value attention mechanism, as in GaAN.
I Every node attends over all others.
I We obtain node embeddings ~hi , as well as the graph

embedding ~hG (as their average).



Attention Solves Your TSP: Decoder

I First, create a context node containing [~hG, ~hπt−1 ,
~hπ1 ].

I Then this node (multi-head) attends over all remaining nodes.
I Finally, the context node single-head attends over all remaining

nodes, with the coefficients interpreted as probabilities.



Relational reasoning
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Modelling multi-agent interactions

The VAIN framework (Hoshen, 2017)



Neighbourhood attention

One-shot imitation slearning (Duan et al., 2017)



Mesh-based cortical parcellation

with Guillem Cucurull, Konrad Wagstyl et al. (NIPS BigNeuro 2017)



Motivation for antibody design

I Antibodies are
I Y-shaped proteins
I a critical part of our immune system

I They neutralise pathogenic bacteria and
viruses by tagging the antigen in a ”lock and
key” system.

I Designing our own arbitrary antibodies would
be a big step towards personalised medicine.



Towards personalised medicine

I Generating an antibody requires first predicting the specific
amino acids (the paratope) which participate in the
neutralisation of the antigen.

I Input: a sequence of (one-hot encoded) antibody amino acids.
(+ a sequence of (one-hot encoded) antigen amino acids)

I Output: probability for each amino acid to participate in the
binding with the antigen.



Paratope prediction

... V H L T P E E ...

Σ

....2 .4 .7 .9 .6 .1 .3...

Antibody

Amino acid sequence

Paratope predictor

P(ρi is binding)



Related work

I i-Patch (Krawczyk et al. (2013)) is a hard-coded physical model
which requires expensive data (e.g. positional information of
each atom of both antibody and antigen).

I ProABC (Olimpieri et al. (2013)) uses a shallow classifier on
antibody sequence data only.

I I have contributed to the two first viable deep learning
architectures in this space, setting the new state-of-the-art
without requiring positional information:

I Parapred (Bioinformatics) (with Edgar Liberis), using a
convolutional-recurrent neural network architecture.

I AG-Fast-Parapred (with Andreea Deac), replacing these layers
with dilated convolutions and (self-)attention, allowing for faster
execution and integrating antigen sequence data.



The Parapred and Fast-Parapred architecture

~ab 1DConv ~b ↑↓-LSTM ~b′ + Dense ~p

Parapred (with Edgar Liberis)

~ab DilatedConv ~b Attention α × ~b′ + Dense ~p

3×

Fast-Parapred (with Andreea Deac)



Cross-modal attentive Parapred

~ab DilatedConv ~b Attention α × ~b′ + Dense ~p

3×

Fast-Parapred (with Andreea Deac)



Cross-modal attentive Parapred

~ab

~ag

DilatedConv ~b

DilatedConv ~g

Attention α × ~b′ + Dense ~p

3×

3×

AG-Fast-Parapred (with Andreea Deac)



Attention!

I Input:
I antibody computed residue features b = {~b1, ~b2, ...~bk}, ~bi ∈ RN

I antigen computed residue features g = {~g1, ~g2, ...~gl}, ~gj ∈ RM

I for each ~bi a set of neighbouring residues νi

I The attention coefficients are then computed using the shared
attentional mechanism a : RN × RM → R and a new feature
vector is obtained:

~b′ = σ

∑
j∈νi

a(~bi , ~gj)~gj





Quantitative results

ROC AUC

ProABC 0.851
Parapred 0.880± 0.002
Fast-Parapred 0.883± 0.001
AG-Fast-Parapred 0.899± 0.004
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95% confidence intervals, after 10 runs of 10-fold crossvalidation.



Qualitative results



Qualitative results

I The model learns the antibody/antigen geometry without being
given any positional information.

I This could enable us to build an epitope predictor!



Thank you!

Questions?
petar.velickovic@cst.cam.ac.uk

http://www.cst.cam.ac.uk/∼pv273/
https://github.com/PetarV-/GAT
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