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Introduction

» In this talk, | will present a survey of recent developments in
applying attentive mechanisms to improving the exploitation
of nontrivial graph structure in data.

» This will involve a discussion of:
» Graph Attention Networks.
» Subsequently released generalisations and improvements
(EAGCN, GaAN, Deeplnf, Attention Solves your TSP).
» Applications to relational reasoning, multi-agent interaction,
cortical mesh segmentation and paratope prediction.
» An ongoing project in graph classification (with Thomas Kipf).
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Graphs are everywhere!
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Mathematical formulation

» We will focus on the node classification problem:

» Input: a matrix of node features, F ¢ RN*F with F features in
each of the N nodes, and an adjacency matrix, A € RNV,

» Output: a matrix of node class probabilities, Y € RN*C such
that Y; = P(Node i € Class j).

» We also assume, for simplicity, that the edges are unweighted
and undirected:
. 1 o]
Thatis, Aj = Aj = ,
" nats A=A {0 otherwise
but many algorithms we will cover are capable of generalising
to weighted and directed edges.

» There are two main kinds of learning tasks in this space. ..
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Transductive learning
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Training algorithm sees all features (including test nodes)!
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Inductive learning

» Now, the algorithm does not have access to all nodes upfront!

» This often implies that either:

» Test nodes are (incrementally) inserted into training graphs;
» Test graphs are disjoint and completely unseen!

» A much harder learning problem (requires generalising across
arbitrary graph structures), and many transductive methods will
be inappropriate for inductive problems!
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Explicit graph neural network methodologies

» We will restrict our attention solely to methods that directly
leverage the graph structure when extracting features.

» Main idea: Compute node representations ﬁ,- based onﬁthe
initial features f; and the graph structure, and then use h; to
classify each node independently.
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The silver bullet—a convolutional layer

» It would be, in particular, highly appropriate if we could
somehow generalise the convolutional operator (as used in
CNNSs) to operate on arbitrary graphs!

» A “common framework” for many of the approaches to be listed
now has been presented in “Neural Message Passing for
Quantum Chemistry”, by Gilmer et al. (ICML 2017).
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Challenges with graph convolutions

» Desirable properties for a graph convolutional layer:
Computational and storage efficiency (~ O(V + E));
Fixed number of parameters (independent of input size);
Localisation (acts on a local neighbourhood of a node);
Specifying different importances to different neighbours;
Applicability to inductive problems.

vV vy vy VvYy

» Fortunately, images have a highly rigid and regular connectivity
pattern (each pixel “connected” to its eight neighbouring
pixels), making such an operator trivial to deploy (as a small
kernel matrix which is slided across).

» Arbitrary graphs are a much harder challenge!
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Spectral graph convolution

» A large class of popular approaches attempts to define a
convolutional operation by operating on the graph in the
spectral domain, leveraging the convolution theorem.

» These approaches utilise the graph Laplacian matrix, L,
defined as L = D — A, where D is the degree matrix (diagonal
matrix with D; = deg(i)) and A is the adjacency matrix.

» Alternately, we may use the normalised graph Laplacian,
L=1-D"2AD "2
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Graph Laplacian example
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Graph Fourier Transform

» The Laplacian is symmetric and positive semi-definite; we can
therefore diagonalise it as L = UAU', where A is a diagonal
matrix of its eigenvalues.

» This means that multiplying the feature matrix by U™ allows us
to enter the spectral domain for the graph! Therein, convolution
just amounts to pointwise multiplication.

» This “Graph Fourier Transform” is the essence of the work of
Bruna et al. (ICLR 2014).
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Graph Fourier Transform, contd

» To convolve two signals using the convolution theorem:
conv(X,y)=U (UT)_(’Q UT}7)
» Therefore, a learnable convolutional layer amounts to:
i =u (%o UTWh;)

where W is a learnable vector of weights, and W € RF'*F is a
shared, learnable, feature transformation.
» Downsides:
» Computing U is O(V3)—infeasible for large graphs!
» One independent weight per node—not fixed!
» Not localised!
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Chebyshev networks

» These issues have been overcome by ChebyNets, the work of
Defferrard et al. (NIPS 2016).

» Rather than computing the Fourier transform, use the related
family of Chebyshev polynomials of order k, Tk:

K
=2 wiTlL
k=0

» These polynomials have a recursive definition, highly
simplifying the computation:

To(x) =1 Ti(x) =x  Ti(x) =2xTk_1(X) — Tk_2(X)
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Properties of Chebyshev networks

» Owing to its recursive definition, we can compute the output
iteratively as S"x_, wilx, where:

th=Wh f=LWh f=2Lf 1 -t
where each step constitutes a sparse multiplication with L.

» The number of parameters is fixed (equal to K weights).

» Note that T, (L) will be a (weighted) sum of all powers of L up
to L. This means that T(L); = 0 if dist(i,j) > k!
— The operator is K-localised!
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Properties of Chebyshev networks, contd

» To avoid issues with exploding or vanishing signals, typically a
scaled version of L is fed into the algorithm:

2L

/\max

L= 1

where \nax is the largest eigenvalue of L.

» This constrains all eigenvalues to lie in the range [—1, 1],
therefore making the norm of all results controllable.

» Major limitation: unable to specify different weights to
different nodes in a neighbourhood! All k-hop neighbours will
receive weight wy + Wy + - - + Wg.
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Limited filters

Going back to the image scenario, under the assumption that each
pixel of an image is connected to its immediate four neighbours, this
would constrain our 3 x 3 convolutional kernel to be of the form:

Wo Wy + Wo Wo
Wy +Wo Wo+ Wi+ Wo Wi+ Wo
Wo wy + Wo Wo

severely limiting the variety of patterns that can be usefully
extracted from the image.
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» The Graph Convolutional Network (GCN) of Kipf & Welling
(ICLR 2017) further fine-tunes the Chebyshev framework.

» Setting K = 1 and assuming Amax ~ 2 allows for redefining a
single convolutional layer as simply:

Fi — B-1/2AB-/2WF,

which significantly improves computational performance on
larger graphs and predictive power on small training sets.

» However, the previous issue is still there. . .
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Applicability to inductive problems

» Another fundamental constraint of all spectral-based methods
is that the learnt filter weights are assuming a particular, fixed,
graph Laplacian.

» This makes them theoretically inadequate for arbitrary
inductive problems!

» We have to move on to non-spectral approaches. ..
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Molecular fingerprinting networks

» An early notable approach towards such methods is the work
of Duvenaud et al. (NIPS 2015).

» Here, the method adapts to processing with various degrees by
learning a separate weight matrix Hy for each node degree d.

» The authors dealt with an extremely specific domain problem
(molecular fingerprinting), where node degrees could never
exceed five; this does not scale to graphs with very wide
degree distributions.
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GraphSAGE

» Conversely, the recently-published GraphSAGE model by
Hamilton et al. (NIPS 2017) aims to restrict every degree to
be the same (by sampling a fixed-size set of neighbours of
every node, during both training and inference).

» Inherently drops relevant data—limiting the set of neighbours
visible to the algorithm.

» Impressive performance was achieved across a variety of
inductive graph problems. However, the best results were often
achieved with an LSTM-based aggregator, which is unlikely to
be optimal.
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Reminder: Self-attention

» A recent development in attentional mechanisms concerns
self-attention; a scenario where the input attends over itself.
o = a(h;, )
=" softmax;(c)h;
j
where a(X, y) is a neural network (the attention mechanism).
» Critically, this is parallelisable across all input positions!

» Vaswani et al. (NIPS 2017) have successfully demonstrated
that this operation is self-sufficient for achieving state-of-the-art
on machine translation.
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Graph Attention Networks

» My ICLR 2018 publication, proposing Graph Attention
Networks (GATs), leverages exactly the self-attention operator!

» In its naive form, the operator would compute attention
coefficients over all pairs of nodes.

» To inject the graph structure into the model, we restrict the
model to only attend over a node’s neighbourhood when
computing its coefficient!
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GAT equations

» To recap, a single attention head of a GAT model performs the
following computation:
ej = a(hi, hy)
_ exp(e;j)
>_ken; €XP(eix)

B; =0 (Z a”Wﬁj)

JEN;

aj

» Some further optimisations (like multi-head attention and
dropout on the «; values) help further stabilise and regularise
the model.
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A single GAT step, visualised

softmax;

concat/avg @
h/
/
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GAT analysis

» Computationally efficient: attention computation can be
parallelised across all edges of the graph, and aggregation
across all nodes!

» Storage efficient—a sparse version does not require storing
more than O(V + E) entries anywhere;

» Fixed number of parameters (dependent only on the desirable
feature count, not on the node count);

» Trivially localised (as we aggregate only over
neighbourhoods);

» Allows for (implicitly) specifying different importances to
different neighbours.

» Readily applicable to inductive problems (as it is a shared
edge-wise mechanism)!
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GAT performance

» It seems that we have finally satisfied all of the major
requirements for our convolution!

» How well does it perform?
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Datasets under study

Summary of the datasets used in our experiments.

Transductive Inductive

Cora Citeseer Pubmed PPI
# Nodes 2708 3327 19717 56944 (24 graphs)
# Edges 5429 4732 44338 818716
# Features/Node 1433 3703 500 50
# Classes 7 6 3 121 (multilabel)
# Training Nodes 140 120 60 44906 (20 graphs)
# Validation Nodes 500 500 500 6514 (2 graphs)
# Test Nodes 1000 1000 1000 5524 (2 graphs)
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Results on Cora/Citeseer/Pubmed

Transductive

Method Cora Citeseer Pubmed
MLP 55.1% 46.5% 71.4%
ManiReg 59.5% 60.1% 70.7%
SemiEmb 59.0% 59.6% 71.7%
LP 68.0% 45.3% 63.0%
DeepWalk  67.2% 43.2% 65.3%
ICA 751% 69.1% 73.9%
Planetoid 75.7% 64.7% 77.2%
Chebyshev 81.2% 69.8% 74.4%
GCN 81.5% 70.3% 79.0%
MoNet 81.7£0.5% — 78.8 + 0.3%

GCN-64*  81.4+05% 70.9+05% 79.0+ 0.3%
GAT (ours) 83.0 +£0.7% 72.5+0.7% 79.0 + 0.3%
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Results on PPI

Inductive

Method PPI
Random 0.396
MLP 0.422
GraphSAGE-GCN 0.500
GraphSAGE-mean 0.598
GraphSAGE-LSTM 0.612
GraphSAGE-pool 0.600
GraphSAGE* 0.768
Const-GAT (ours) 0.934 + 0.006
GAT (ours) 0.973 + 0.002

Here, Const-GAT is a GCN-like inductive model.
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t-SNE + attention coefficients on Cora




Incorporating edge context

» The attentional setup of GAT treats each edge equally.

» This will not be appropriate for inputs such as chemical
compounds, wherein the same atom can possess identical
neighbourhoods but with different bonds!

NH, NH, NH, NH,
N N N 1 N
N \ N \ N AN N .
S § L
~ o o b ~ - N
H N H N H N H
Adenine Atom Pair Type Bond Order Ring Status
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EAGCN (Shang et al., 2018)

» The edge context was incorporated for the first time in the edge
attention-based multi-relational GCN (EAGCN) model.

» Assume that there are K different edge attributes (e.g. atom
pair type, bond order...) and that the /-th attribute has d;
possible values.

» A separate attention coefficient «;; is learned for every value of
every attribute (i € {1,...,K},j € {1,...d;}), as a simple
scalar embedding.
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EAGCN attention mechanism

» These embeddings then form the (unnormalised) attention
coefficient matrices A’ for each edge attribute i:

—00 SAt
which are then softmax-normalised:
Al — exp (Alst)'
7 Xkexp (Ak)
» We can then use each of these as a separate attention head,
and e.g. concatenate their outputs (for node features H):

; {a,-j s — toftypejinattr. i
st —

K ~ .
H — ,-l o (A'Hw)
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EAGCN in action: computing A’

Edge Attributes } Dictionaries Edge Relational Graphs
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EAGCN in action: single layer

l
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Evaluated on molecular property classification and regression,
outperforming several standard graph-based baselines.
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GaAN (Zhang et al., 2018)

» The multi-head attention of GAT treats each attention head
equally. However, not all heads necessarily convey equally
important or meaningful feature spaces.

» The Gated Attention Network (GaAN) architecture introduces a
gating mechanism on top of a key-value attention (as in
Vaswani et al.), to control the impact of each output of each
attention head.

» Evaluated on inductive node classification (Reddit/PPI) and
traffic speed forecasting (METR-LA), outperforming many
challenging baselines.
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GaAN dataflow

» Assume we have node features E,- and node reference vectors
Z; (useful to decouple when working on temporal graphs).

» First, derive queries, keys and values for the attention:

qi = Wqh; i =WgZ; vVi=W,z

» Now, use the queries and keys to derive coefficients:

exp ((511', E/>>
Zme}\/,- exp ((Eiia Em>)

Qjj =
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GaAN dataflow, contd

» At the same time, compute the gating for each node (using
max-pool and average-pool information):

N - Z'GN»ZJ'
=oc | Wy | hj || max W,,Z; sl
gl g( g!:” /EM m/” |M|

» Finally, attend over the values and apply the gating (distributed
over K independent heads)—including a skip connection:

K
E; =0 (Wo |:h/' H H gfk) o) Z al(_jk)“/}(k)])

k=1 JEN;
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GaAN in action

3 attention
heads
0,
Zy, Zy, —>
w; O o Wz
Softmax
Q)W 65 learned
0,, T@ gates

Zy, Ly, ——>
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Deeplnf (Qiu et al., 2018)

v

Modelling influence locality within large social networks.

v

Let s!, € {0, 1} denote whether node u has performed an
action at any time t' < t.

v

Aim to predict whether node v ever performs the action (s;*°),
given the action statuses of all of its r-hop neighbours at time t.

v

First study where attentional mechanisms (such as GAT)
appear to be necessary for surpassing baseline approaches
(such as logistic regression or SVMs).
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Deeplnf pipeline

Raw Embedding  Instance Input GCN/GAT Output Ground
Input Layer Normalization Layer Layer Layer Truth

2

mini-batch
of size%

(©) (d) (e) ® (@)

Datasets:
» OAG (network: coauthorship; action: citation)
» Digg (network: friendship; action: vote up)
» Twitter (network: follow; action: retweet “Higgs”)
» Weibo (network: follow; action: retweet)
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Deeplinf: qualitative analysis of attention
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Attention Solves Your TSP (Kool & Welling, 2018)

» Successfully demonstrated the viability of attentional
mechanisms on graphs to solving combinatorial problems
(Euclidean TSP—each node is specified by (x, y) coordinates).

» A decoder computes the probability distribution for the next
node to visit, m;, based on:

» a fixed-size encoding of the graph, hg (obtained by an encoder);
» the embeddings of the first and last visited node: h.,, h,,_,.
» the embeddings h; of all nodes i still in the graph.

» Then this probability distribution is optimised using
REINFORCE (with a greedy rollout baseline).
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Attention Solves Your TSP: Encoder

GEPEEECECER
(©) Node input

O Node embedding

(O Graph embedding

¢ Message

.
' '
s L \ \ \ Nx + Projection

d + Skip connection

. { 1 g
\ =% ( + + + ) J  Attention query

» Uses the key-value attention mechanism, as in GaAN.

» Every node attends over all others.
» We obtain node embeddings h;, as well as the graph
embedding hg (as their average).
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Attention Solves Your TSP: Decoder

» First, create a context node containing [Ag, Az, ,, Fixr,].
» Then this node (multi-head) attends over all remaining nodes.

» Finally, the context node single-head attends over all remaining
nodes, with the coefficients interpreted as probabilities.

() Nodeembedding () Context node embedding () Leaned input symbol |, Message | Compatibility

© Graph embedding  (© O0) Concatenation [ Outputprobabiliy | Atention query | Identity / reference

W e w w
(N). o
ny-(@09) O Q O

MHA ~
g

iy O wu P“I:I DQ’:UO
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Relational reasoning

Final CNN feature maps RN

e, Object pair
H with question  J§-MLP

Conv.

Element-wise

sum
What size is the cylinder
that is left of the brown

metal thing that is left
of the big sphere?
|—> what size is ... sphere

LSTM

Relation Networks (Santoro et al., 2017)
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Modelling multi-agent interactions

The VAIN framework (Hoshen, 2017)
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Neighbourhood attention

Attention

§ over
Context Network ( .
urrent

State
Attention over
Demonstration

‘\lu"hbmhaud Attention

Blocki A B C D EFGH I J

Context Embedding

| Hidden layers ‘ Hidden layers
I Action

Demonstration Network ’ [ - ‘ . N
SUlBaEe @ [

Temporal Dropout

Temporal ( onvolution {

Dcnmns\m\mn Current State

One-shot imitation slearning (Duan et al., 2017)
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Mesh-based cortical parcellation

(a) Brain (b) Ground truth (c) NodeAVG
(d) NodeMLP (e) Jakobsen et al. [22] (f) GCN N (g) GAT

with Guillem Cucurull, Konrad Wagstyl et al. (NIPS BigNeuro 2017)
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Motivation for antibody design

. . Antigens
» Antibodies are - w v
» Y-shaped proteins -

» a critical part of our immune system &2 B

» They neutralise pathogenic bacteria and

viruses by tagging the antigen in a "lock and % %
key” system.

» Designing our own arbitrary antibodies would

be a big step towards personalised medicine. Antibody
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Towards personalised medicine

» Generating an antibody requires first predicting the specific
amino acids (the paratope) which participate in the
neutralisation of the antigen.

» Input: a sequence of (one-hot encoded) antibody amino acids.
(+ a sequence of (one-hot encoded) antigen amino acids)

» Output: probability for each amino acid to participate in the
binding with the antigen.
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Paratope prediction

“ee2 4 7.9 .6 .1 .3+~ P(p; is binding)

by | Paratope predictor

-«+V H L T P E E--- Amino acid sequence

W
%V Antibody
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Related work

» i-Patch (Krawczyk et al. (2013)) is a hard-coded physical model
which requires expensive data (e.g. positional information of
each atom of both antibody and antigen).

» ProABC (Olimpieri et al. (2013)) uses a shallow classifier on
antibody sequence data only.

» | have contributed to the two first viable deep learning
architectures in this space, setting the new state-of-the-art
without requiring positional information:

» Parapred (Bioinformatics) (with Edgar Liberis), using a
convolutional-recurrent neural network architecture.

» AG-Fast-Parapred (with Andreea Deac), replacing these layers
with dilated convolutions and (self-)attention, allowing for faster
execution and integrating antigen sequence data.
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The Parapred and Fast-Parapred architecture

Dense —— p

b/

ab —>{ 1DConv b m

Parapred (with Edgar Liberis)

ab —1{ DilatedConv —> j —{ Attention

- 7 I

Dense —> p

Fast-Parapred (with Andreea Deac)
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Cross-modal attentive Parapred

ab — DilatedConv ——> p —>| Attention Dense ——> p

Fast-Parapred (with Andreea Deac)
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Cross-modal attentive Parapred

ab —| DilatedConv —> j —>{ Attention Dense ——> p

3x

ag —| DilatedConv —> ¢

~

3x

AG-Fast-Parapred (with Andreea Deac)
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Attention!

» Input:
» antibody computed residue features b = {by, by, ...bx}, b; € RN
» antigen computed residue features g = {1, go, ...gi}, g € RM
» for each 5,- a set of neighbouring residues v;

» The attention coefficients are then computed using the shared
attentional mechanism a: RN x RM — R and a new feature
vector is obtained:
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Quantitative results

—— Parapred
] —— Fast-Parapred
ROC AUC 09 —— AG-Fast-Parapred
0.8 - ¢ Antibody i-Patch
ProABC 0.851 .
Parapred 0.880 + 0.002 § 0.6 1
[N

Fast-Parapred 0883 :I: 0001 0.5 1
AG-Fast-Parapred 0899 + 0004 0.4 4

0:0 012 0j4 0j6 018 110
Recall

95% confidence intervals, after 10 runs of 10-fold crossvalidation.
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Qualitative results
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Qualitative results

4

» The model learns the antibody/antigen geometry without being
given any positional information.
» This could enable us to build an epitope predictor!
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Thank you!

Questions?

petar.velickovic@cst.cam.ac.uk
http://www.cst.cam.ac.uk/~pv273/

https://github.com/PetarV-/GAT
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