
Keeping our graphs attentive
Petar Veličković

Artificial Intelligence Group
Department of Computer Science and Technology, University of Cambridge, UK

AMLab Seminar 10 April 2018

Introduction

I In this talk, I will present a survey of recent developments in
applying attentive mechanisms to improving the exploitation
of nontrivial graph structure in data.

I This will involve a discussion of:
I Graph Attention Networks.
I Subsequently released generalisations and improvements

(EAGCN, GaAN, DeepInf, Attention Solves your TSP).
I Applications to relational reasoning, multi-agent interaction,

cortical mesh segmentation and paratope prediction.
I An ongoing project in graph classification (with Thomas Kipf).

Graphs are everywhere!

Mathematical formulation

I We will focus on the node classification problem:
I Input: a matrix of node features, F ∈ RN×F , with F features in

each of the N nodes, and an adjacency matrix, A ∈ RN×N .
I Output: a matrix of node class probabilities, Y ∈ RN×C , such

that Yij = P(Node i ∈ Class j).

I We also assume, for simplicity, that the edges are unweighted
and undirected:

I That is, Aij = Aji =

{
1 i ↔ j
0 otherwise

but many algorithms we will cover are capable of generalising
to weighted and directed edges.

I There are two main kinds of learning tasks in this space. . .

Transductive learning

Training algorithm sees all features (including test nodes)!

Inductive learning

I Now, the algorithm does not have access to all nodes upfront!

I This often implies that either:
I Test nodes are (incrementally) inserted into training graphs;
I Test graphs are disjoint and completely unseen!

I A much harder learning problem (requires generalising across
arbitrary graph structures), and many transductive methods will
be inappropriate for inductive problems!

Explicit graph neural network methodologies

I We will restrict our attention solely to methods that directly
leverage the graph structure when extracting features.

I Main idea: Compute node representations ~hi based on the
initial features ~fi and the graph structure, and then use ~hi to
classify each node independently.

The silver bullet—a convolutional layer

I It would be, in particular, highly appropriate if we could
somehow generalise the convolutional operator (as used in
CNNs) to operate on arbitrary graphs!

I A “common framework” for many of the approaches to be listed
now has been presented in “Neural Message Passing for
Quantum Chemistry”, by Gilmer et al. (ICML 2017).

Convolution on images

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗ K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Convolution on images

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗ K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Convolution on images

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗ K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Convolution on images

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗ K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Challenges with graph convolutions

I Desirable properties for a graph convolutional layer:
I Computational and storage efficiency (∼ O(V + E));
I Fixed number of parameters (independent of input size);
I Localisation (acts on a local neighbourhood of a node);
I Specifying different importances to different neighbours;
I Applicability to inductive problems.

I Fortunately, images have a highly rigid and regular connectivity
pattern (each pixel “connected” to its eight neighbouring
pixels), making such an operator trivial to deploy (as a small
kernel matrix which is slided across).

I Arbitrary graphs are a much harder challenge!

Spectral graph convolution

I A large class of popular approaches attempts to define a
convolutional operation by operating on the graph in the
spectral domain, leveraging the convolution theorem.

I These approaches utilise the graph Laplacian matrix, L,
defined as L = D− A, where D is the degree matrix (diagonal
matrix with Dii = deg(i)) and A is the adjacency matrix.

I Alternately, we may use the normalised graph Laplacian,
L̃ = I− D−1/2AD−1/2.

Graph Laplacian example

1 2 3

4

5

6 L =

2 −1 0 0 −1 0
−1 3 −1 0 −1 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1
−1 −1 0 −1 3 0
0 0 0 −1 0 1

Graph Fourier Transform

I The Laplacian is symmetric and positive semi-definite; we can
therefore diagonalise it as L = UΛUT , where Λ is a diagonal
matrix of its eigenvalues.

I This means that multiplying the feature matrix by UT allows us
to enter the spectral domain for the graph! Therein, convolution
just amounts to pointwise multiplication.

I This “Graph Fourier Transform” is the essence of the work of
Bruna et al. (ICLR 2014).

Graph Fourier Transform, cont’d

I To convolve two signals using the convolution theorem:

conv(~x , ~y) = U
(

UT~x � UT~y
)

I Therefore, a learnable convolutional layer amounts to:

~h′i = U
(
~w � UT W~hi

)
where ~w is a learnable vector of weights, and W ∈ RF ′×F is a
shared, learnable, feature transformation.

I Downsides:
I Computing U is O(V 3)—infeasible for large graphs!
I One independent weight per node—not fixed!
I Not localised!

Chebyshev networks

I These issues have been overcome by ChebyNets, the work of
Defferrard et al. (NIPS 2016).

I Rather than computing the Fourier transform, use the related
family of Chebyshev polynomials of order k , Tk :

~h′i =
K∑

k=0

wkTk (L)W~hi

I These polynomials have a recursive definition, highly
simplifying the computation:

T0(x) = 1 T1(x) = x Tk (x) = 2xTk−1(x)− Tk−2(x)

Properties of Chebyshev networks

I Owing to its recursive definition, we can compute the output
iteratively as

∑K
k=0 wk~tk , where:

~t0 = W~hi ~t1 = LW~hi ~tk = 2L~tk−1 −~tk−2

where each step constitutes a sparse multiplication with L.

I The number of parameters is fixed (equal to K weights).

I Note that Tk (L) will be a (weighted) sum of all powers of L up
to Lk . This means that Tk (L)ij = 0 if dist(i , j) > k !
=⇒ The operator is K-localised!

Properties of Chebyshev networks, cont’d

I To avoid issues with exploding or vanishing signals, typically a
scaled version of L is fed into the algorithm:

L̃ =
2L
λmax

− I

where λmax is the largest eigenvalue of L.

I This constrains all eigenvalues to lie in the range [−1,1],
therefore making the norm of all results controllable.

I Major limitation: unable to specify different weights to
different nodes in a neighbourhood! All k -hop neighbours will
receive weight wk + wk+1 + · · ·+ wK .

Limited filters

Going back to the image scenario, under the assumption that each
pixel of an image is connected to its immediate four neighbours, this
would constrain our 3× 3 convolutional kernel to be of the form: w2 w1 + w2 w2

w1 + w2 w0 + w1 + w2 w1 + w2
w2 w1 + w2 w2

severely limiting the variety of patterns that can be usefully
extracted from the image.

GCNs

I The Graph Convolutional Network (GCN) of Kipf & Welling
(ICLR 2017) further fine-tunes the Chebyshev framework.

I Setting K = 1 and assuming λmax ≈ 2 allows for redefining a
single convolutional layer as simply:

~h′i = D̃−1/2ÃD̃−1/2W~hi

which significantly improves computational performance on
larger graphs and predictive power on small training sets.

I However, the previous issue is still there. . .

Applicability to inductive problems

I Another fundamental constraint of all spectral-based methods
is that the learnt filter weights are assuming a particular, fixed,
graph Laplacian.

I This makes them theoretically inadequate for arbitrary
inductive problems!

I We have to move on to non-spectral approaches. . .

Molecular fingerprinting networks

I An early notable approach towards such methods is the work
of Duvenaud et al. (NIPS 2015).

I Here, the method adapts to processing with various degrees by
learning a separate weight matrix Hd for each node degree d .

I The authors dealt with an extremely specific domain problem
(molecular fingerprinting), where node degrees could never
exceed five; this does not scale to graphs with very wide
degree distributions.

GraphSAGE

I Conversely, the recently-published GraphSAGE model by
Hamilton et al. (NIPS 2017) aims to restrict every degree to
be the same (by sampling a fixed-size set of neighbours of
every node, during both training and inference).

I Inherently drops relevant data—limiting the set of neighbours
visible to the algorithm.

I Impressive performance was achieved across a variety of
inductive graph problems. However, the best results were often
achieved with an LSTM-based aggregator, which is unlikely to
be optimal.

Reminder: Self-attention

I A recent development in attentional mechanisms concerns
self-attention; a scenario where the input attends over itself:

αij = a(~hi , ~hj)

~h′i =
∑

j

softmaxj(αij)~hj

where a(~x , ~y) is a neural network (the attention mechanism).

I Critically, this is parallelisable across all input positions!

I Vaswani et al. (NIPS 2017) have successfully demonstrated
that this operation is self-sufficient for achieving state-of-the-art
on machine translation.

Graph Attention Networks

I My ICLR 2018 publication, proposing Graph Attention
Networks (GATs), leverages exactly the self-attention operator!

I In its naı̈ve form, the operator would compute attention
coefficients over all pairs of nodes.

I To inject the graph structure into the model, we restrict the
model to only attend over a node’s neighbourhood when
computing its coefficient!

GAT equations

I To recap, a single attention head of a GAT model performs the
following computation:

eij = a(~hi , ~hj)

αij =
exp(eij)∑

k∈Ni
exp(eik)

~h′i = σ

∑
j∈Ni

αijW~hj

I Some further optimisations (like multi-head attention and

dropout on the αij values) help further stabilise and regularise
the model.

A single GAT step, visualised

αij

~a

so
ftm

ax
j

W~hi W~hj

~h1

~h2

~h3

~h4

~h5

~h6

~α
16

~α11

~α
12

~α13

~α 14

~α
15

~h′1
concat/avg

GAT analysis

I Computationally efficient: attention computation can be
parallelised across all edges of the graph, and aggregation
across all nodes!

I Storage efficient—a sparse version does not require storing
more than O(V + E) entries anywhere;

I Fixed number of parameters (dependent only on the desirable
feature count, not on the node count);

I Trivially localised (as we aggregate only over
neighbourhoods);

I Allows for (implicitly) specifying different importances to
different neighbours.

I Readily applicable to inductive problems (as it is a shared
edge-wise mechanism)!

GAT performance

I It seems that we have finally satisfied all of the major
requirements for our convolution!

I How well does it perform?

Datasets under study

Summary of the datasets used in our experiments.

Transductive Inductive
Cora Citeseer Pubmed PPI

Nodes 2708 3327 19717 56944 (24 graphs)
Edges 5429 4732 44338 818716
Features/Node 1433 3703 500 50
Classes 7 6 3 121 (multilabel)
Training Nodes 140 120 60 44906 (20 graphs)
Validation Nodes 500 500 500 6514 (2 graphs)
Test Nodes 1000 1000 1000 5524 (2 graphs)

Results on Cora/Citeseer/Pubmed

Transductive

Method Cora Citeseer Pubmed

MLP 55.1% 46.5% 71.4%
ManiReg 59.5% 60.1% 70.7%
SemiEmb 59.0% 59.6% 71.7%
LP 68.0% 45.3% 63.0%
DeepWalk 67.2% 43.2% 65.3%
ICA 75.1% 69.1% 73.9%
Planetoid 75.7% 64.7% 77.2%
Chebyshev 81.2% 69.8% 74.4%
GCN 81.5% 70.3% 79.0%
MoNet 81.7 ± 0.5% — 78.8 ± 0.3%

GCN-64∗ 81.4 ± 0.5% 70.9 ± 0.5% 79.0 ± 0.3%
GAT (ours) 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3%

Results on PPI

Inductive

Method PPI

Random 0.396
MLP 0.422
GraphSAGE-GCN 0.500
GraphSAGE-mean 0.598
GraphSAGE-LSTM 0.612
GraphSAGE-pool 0.600

GraphSAGE∗ 0.768
Const-GAT (ours) 0.934 ± 0.006
GAT (ours) 0.973 ± 0.002

Here, Const-GAT is a GCN-like inductive model.

t-SNE + attention coefficients on Cora

Incorporating edge context

I The attentional setup of GAT treats each edge equally.

I This will not be appropriate for inputs such as chemical
compounds, wherein the same atom can possess identical
neighbourhoods but with different bonds!

EAGCN (Shang et al., 2018)

I The edge context was incorporated for the first time in the edge
attention-based multi-relational GCN (EAGCN) model.

I Assume that there are K different edge attributes (e.g. atom
pair type, bond order. . .) and that the i-th attribute has di
possible values.

I A separate attention coefficient αij is learned for every value of
every attribute (i ∈ {1, . . . ,K}, j ∈ {1, . . .di}), as a simple
scalar embedding.

EAGCN attention mechanism

I These embeddings then form the (unnormalised) attention
coefficient matrices Ai for each edge attribute i :

Ai
st =

{
αij s → t of type j in attr. i
−∞ s 6→ t

which are then softmax-normalised:

Ãi
st =

exp
(
Ai

st
)∑

k exp
(
Ai

kt

)
I We can then use each of these as a separate attention head,

and e.g. concatenate their outputs (for node features H):

H′ =
K

‖
i=1

σ
(

ÃiHW
)

EAGCN in action: computing Ai

EAGCN in action: single layer

Evaluated on molecular property classification and regression,
outperforming several standard graph-based baselines.

GaAN (Zhang et al., 2018)

I The multi-head attention of GAT treats each attention head
equally. However, not all heads necessarily convey equally
important or meaningful feature spaces.

I The Gated Attention Network (GaAN) architecture introduces a
gating mechanism on top of a key-value attention (as in
Vaswani et al.), to control the impact of each output of each
attention head.

I Evaluated on inductive node classification (Reddit/PPI) and
traffic speed forecasting (METR-LA), outperforming many
challenging baselines.

GaAN dataflow

I Assume we have node features ~hi and node reference vectors
~zj (useful to decouple when working on temporal graphs).

I First, derive queries, keys and values for the attention:

~qi = Wq~hi
~ki = Wk~zi ~vi = Wv~zi

I Now, use the queries and keys to derive coefficients:

αij =
exp

(
〈~qi , ~kj〉

)
∑

m∈Ni
exp

(
〈~qi , ~km〉

)

GaAN dataflow, cont’d

I At the same time, compute the gating for each node (using
max-pool and average-pool information):

~gi = σ

(
Wg

[
~hi ‖ max

j∈Ni

Wm~zj ‖
∑

j∈Ni
~zj

|Ni |

])

I Finally, attend over the values and apply the gating (distributed
over K independent heads)—including a skip connection:

~h′i = σ

Wo

~hi ‖
K

‖
k=1

~g(k)
i �

∑
j∈Ni

α
(k)
ij ~v (k)

j

GaAN in action

DeepInf (Qiu et al., 2018)

I Modelling influence locality within large social networks.

I Let st
u ∈ {0,1} denote whether node u has performed an

action at any time t ′ < t .

I Aim to predict whether node v ever performs the action (s+∞
v),

given the action statuses of all of its r -hop neighbours at time t .

I First study where attentional mechanisms (such as GAT)
appear to be necessary for surpassing baseline approaches
(such as logistic regression or SVMs).

DeepInf pipeline

Datasets:
I OAG (network: coauthorship; action: citation)
I Digg (network: friendship; action: vote up)
I Twitter (network: follow; action: retweet “Higgs”)
I Weibo (network: follow; action: retweet)

DeepInf: qualitative analysis of attention

Attention Solves Your TSP (Kool & Welling, 2018)

I Successfully demonstrated the viability of attentional
mechanisms on graphs to solving combinatorial problems
(Euclidean TSP—each node is specified by (x , y) coordinates).

I A decoder computes the probability distribution for the next
node to visit, πt , based on:

I a fixed-size encoding of the graph, ~hG (obtained by an encoder);
I the embeddings of the first and last visited node: ~hπ1 , ~hπt−1 .
I the embeddings ~hi of all nodes i still in the graph.

I Then this probability distribution is optimised using
REINFORCE (with a greedy rollout baseline).

Attention Solves Your TSP: Encoder

I Uses the key-value attention mechanism, as in GaAN.
I Every node attends over all others.
I We obtain node embeddings ~hi , as well as the graph

embedding ~hG (as their average).

Attention Solves Your TSP: Decoder

I First, create a context node containing [~hG, ~hπt−1 ,
~hπ1].

I Then this node (multi-head) attends over all remaining nodes.
I Finally, the context node single-head attends over all remaining

nodes, with the coefficients interpreted as probabilities.

Relational reasoning

small+

-MLP

...

...

... ...

is spherewhat size

Final CNN feature maps RN

LSTM

object -MLP

Conv.

What size is the cylinder
that is left of the brown
metal thing that is left
of the big sphere?

*

Object pair
with question

Element-wise
sum

Relation Networks (Santoro et al., 2017)

Modelling multi-agent interactions

The VAIN framework (Hoshen, 2017)

Neighbourhood attention

One-shot imitation slearning (Duan et al., 2017)

Mesh-based cortical parcellation

with Guillem Cucurull, Konrad Wagstyl et al. (NIPS BigNeuro 2017)

Motivation for antibody design

I Antibodies are
I Y-shaped proteins
I a critical part of our immune system

I They neutralise pathogenic bacteria and
viruses by tagging the antigen in a ”lock and
key” system.

I Designing our own arbitrary antibodies would
be a big step towards personalised medicine.

Towards personalised medicine

I Generating an antibody requires first predicting the specific
amino acids (the paratope) which participate in the
neutralisation of the antigen.

I Input: a sequence of (one-hot encoded) antibody amino acids.
(+ a sequence of (one-hot encoded) antigen amino acids)

I Output: probability for each amino acid to participate in the
binding with the antigen.

Paratope prediction

... V H L T P E E ...

Σ

....2 .4 .7 .9 .6 .1 .3...

Antibody

Amino acid sequence

Paratope predictor

P(ρi is binding)

Related work

I i-Patch (Krawczyk et al. (2013)) is a hard-coded physical model
which requires expensive data (e.g. positional information of
each atom of both antibody and antigen).

I ProABC (Olimpieri et al. (2013)) uses a shallow classifier on
antibody sequence data only.

I I have contributed to the two first viable deep learning
architectures in this space, setting the new state-of-the-art
without requiring positional information:

I Parapred (Bioinformatics) (with Edgar Liberis), using a
convolutional-recurrent neural network architecture.

I AG-Fast-Parapred (with Andreea Deac), replacing these layers
with dilated convolutions and (self-)attention, allowing for faster
execution and integrating antigen sequence data.

The Parapred and Fast-Parapred architecture

~ab 1DConv ~b ↑↓-LSTM ~b′ + Dense ~p

Parapred (with Edgar Liberis)

~ab DilatedConv ~b Attention α × ~b′ + Dense ~p

3×

Fast-Parapred (with Andreea Deac)

Cross-modal attentive Parapred

~ab DilatedConv ~b Attention α × ~b′ + Dense ~p

3×

Fast-Parapred (with Andreea Deac)

Cross-modal attentive Parapred

~ab

~ag

DilatedConv ~b

DilatedConv ~g

Attention α × ~b′ + Dense ~p

3×

3×

AG-Fast-Parapred (with Andreea Deac)

Attention!

I Input:
I antibody computed residue features b = {~b1, ~b2, ...~bk}, ~bi ∈ RN

I antigen computed residue features g = {~g1, ~g2, ...~gl}, ~gj ∈ RM

I for each ~bi a set of neighbouring residues νi

I The attention coefficients are then computed using the shared
attentional mechanism a : RN × RM → R and a new feature
vector is obtained:

~b′ = σ

∑
j∈νi

a(~bi , ~gj)~gj

Quantitative results

ROC AUC

ProABC 0.851
Parapred 0.880± 0.002
Fast-Parapred 0.883± 0.001
AG-Fast-Parapred 0.899± 0.004

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Parapred
Fast-Parapred
AG-Fast-Parapred
Antibody i-Patch

95% confidence intervals, after 10 runs of 10-fold crossvalidation.

Qualitative results

Qualitative results

I The model learns the antibody/antigen geometry without being
given any positional information.

I This could enable us to build an epitope predictor!

Thank you!

Questions?
petar.velickovic@cst.cam.ac.uk

http://www.cst.cam.ac.uk/∼pv273/
https://github.com/PetarV-/GAT

	Introduction
	Spectral convolutions
	Non-spectral convolutions
	GATs
	Extensions
	Antibodies
	Conclusions
	Results

