DeepMind

Neural Algorithmic Reasoning

Petar Veličković

PHYS 7332 – Network Data Science 2 Northeastern University

2 April 2021

In this talk: (Classical) **Algorithms**

Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.

Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.

Overview

Our aim is to address three key questions: (roughly ~20min for each)

- Why should we, as deep learning practitioners, study **algorithms**?
 - Further, why might it be beneficial to make *'algorithm-inspired'* neural networks?
- How to **build** neural networks that behave algorithmically?
 - And why am I even telling you this in a "Graph Machine Learning" course?
- Do algorithmic neural networks actually **work** when deployed?
 - If so, how are they *actually* being used?

Hopefully, also some ideas on *where* you might be able to *apply* the ideas above :)

DeepMind

Motivation for studying algorithms

Why algorithms?

- Essential "pure" forms of combinatorial reasoning
 - 'Timeless' principles that will remain regardless of the model of computation
 - Completely decoupled from any form of **perception***

*though perception itself may also be expressed in the language of algorithms

Why algorithms?

- Essential "pure" forms of combinatorial reasoning
 - 'Timeless' principles that will remain regardless of the model of computation
 - Completely decoupled from any form of **perception***
- Favourable properties
 - Trivial **strong** generalisation
 - **Compositionality** via *subroutines*
 - Provable correctness and performance guarantees
 - Interpretable **operations** / *pseudocode*

Why algorithms?

- Essential "pure" forms of combinatorial reasoning
 - 'Timeless' principles that will remain regardless of the model of computation
 - Completely decoupled from any form of **perception***
- Favourable properties
 - Trivial **strong** generalisation
 - **Compositionality** via *subroutines*
 - Provable correctness and performance guarantees
 - Interpretable operations / pseudocode
- Hits close to home
 - Algorithms and competitive programming are how I got into Computer Science

DeepMind

Maximum flow and the Ford-Fulkerson algorithm

Maximum flow problem

- Flow network: graph G = (V, E), augmented with a capacity function, c: $V \times V \rightarrow \mathbb{R}^+$
 - Capacity c_{uv} denotes how much **flow** is allowed on (u, v) edge
- Two special nodes: source, **s**, and sink, **t**
 - Source unleashes "infinite" capacity, sink receives "infinite" capacity
- A **flow** in G is any mapping $f: V \times V \rightarrow \mathbb{R}^+$, such that:

The value of a flow is the total flow emanating from the source:
We are interested in maximising it!

$$\sum_{v \in V} f_{s,v} - \sum_{v \in V} f_{v,s}$$

Max-flow example (f = 17)

Ford-Fulkerson's Algorithm

• Such a **rigorously** defined problem often admits remarkably **elegant** and **provably correct** algorithm blueprint!

FORD-FULKERSON-METHOD (G, s, t)

1 initialize flow f to 0

*representing the capacities that remain after applying f

- 2 while there exists an augmenting path p in the residual network G_f
- 3 augment flow f along p

4 return f

- Many specific ways to find *p* yield different algorithms (e.g. Edmonds-Karp, Dinitz, etc...)
 - This can be proven to terminate with correct solution

Final solution!

Max-flow Min-cut theorem

Observing data in this way, also yields easy observation of **connections**, hence **theorems**!

Theorem 26.6 (Max-flow min-cut theorem)

If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c(S, T) for some cut (S, T) of G.

DeepMind

"Fundamentals of a method for evaluating rail net capacities"

(Harris & Ross, 1955)

The core problem

- Classical algorithms are designed with *abstraction* in mind, enforcing their inputs to conform to stringent **preconditions**.
 - Keeping the inputs constrained enables an uninterrupted focus on "reasoning"
 - Easily certify the resulting procedure's correctness, i.e., stringent **postconditions**
- However, we must never forget **why** we design algorithms!
- Unfortunately, this is at **timeless odds** with the way they are designed
 - Let's study an example from the 1950s.

Original interest in flows

SECRET

U.S. AIRTORUL PROJECT RAND

RESEARCH MEMORANDUM

/)
	FUNDAMENTALS OF A METHOD FOR EVALUATING	
	RAIL NET CAPACITIES (U)	
4	T. E. Harris F. S. Boss	
	F. D. 1000	
	RM-1573	
0	October 24, 1955 Copy No.	7
1		/

SUMMARY

Air power is an effective means of interdicting an enemy's rail system, and such usage is a logical and important mission for this Arm.

As in many military operations, however, the success of interdiction depends largely on how complete, accurate, and timely is the commander's information, particularly concerning the effect of his interdiction-program efforts on the enemy's capability to move men and supplies. This information should be available at the time the results are being achieved.

https://apps.dtic.mil/dtic/tr/fulltext/u2/093458.pdf

This material contains information affecting the notional defense of the United States within the meaning of the expronage laws, Title 18 U.S.C., Sees 793 and 794, the transmission or the revelation of which in any manare to an unauthorized person is prohibited by law.

The Warsaw Pact railway network

Find *"the bottleneck"*, i.e. the **minimum cut**.

As we saw, this is directly related to computing the **maximum flow**.

(this was *intuitively* assumed by Harris & Ross as well)

The core problem, as seen in **1955**

II. THE ESTIMATING OF RAILWAY CAPACITIES

The evaluation of both railway system and individual track capacities is, to a considerable extent, an art. The authors know of no tested mathematical model or formula that includes all of the variations and imponderables that must be weighed .* Even when the individual has been closely associated with the particular territory he is evaluating, the final answer, however accurate, is largely one of judgment and experience.

An important issue for the community

- The "core problem" plagues applications of classical combinatorial algorithms to this day!
- Satisfying their preconditions necessitates converting inputs into an **abstractified** form
- If done manually, this often implies drastic information loss
 - Combinatorial problem no longer accurately portrays the dynamics of the real world.
 - Algorithm will give a **perfect** solution, but in a *useless* environment
- The data we need to apply the algorithm may be only **partially** observable
 - This can often render the algorithm completely inapplicable.
- An issue of high interest for *both* combinatorial and operations research communities.

DeepMind

Abstractifying the core problem

- Assume we have *real-world* inputs, but our algorithm only admits *abstract* inputs
 - For now, we assumed **manually** converting from one input to another

Abstractifying the core problem

- Assume we have *real-world* inputs, but our algorithm only admits *abstract* inputs
 - For now, we assumed **manually** converting from one input to another

• Whenever we have **manual** feature engineering of **raw** data, **neural nets** are attractive!

Attacking the core problem

- First point of attack: "good old deep learning"
 - Replace human feature extractor with **neural network**
 - Still apply the same combinatorial algorithm

- First issue: algorithms typically perform discrete optimisation
 - This does not play nicely with gradient-based optimisation that neural nets require.

Backpropagating through classical algorithms

Vlastelica et al. (ICLR'20) provide a great approach for differentiating CO solver outputs

DIFFERENTIATION OF BLACKBOX COMBINATORIAL SOLVERS

Marin Vlastelica^{1*}, Anselm Paulus^{1*}, Vít Musil², Georg Martius¹, Michal Rolínek¹

Black-box backprop

Algorithmic *bottleneck*

- Second (more fundamental) issue: *data efficiency*
 - Real-world data is often incredibly *rich*
 - We still have to compress it down to **scalar values**
- The algorithmic solver:
 - **Commits** to using this scalar
 - Assumes it is **perfect**!
- If there are insufficient training data to properly estimate the scalars, we hit same issues!
 - Algorithm will give a **perfect** solution, but in a *suboptimal* environment

Breaking the bottleneck

- Neural networks derive great flexibility from their **latent** representations
 - They are inherently *high-dimensional*
 - If any component is poorly predicted, others can step in and compensate!
- To break the bottleneck, we replace the algorithm with a **neural network**!

(The setting naturally aligns with encode-process-decode (Hamrick et al., CSS'18))

Properties of this construction

- Assuming our **latent**-state NN *aligns* with the steps of an algorithm, we now have:
 - An **end-to-end** neural pipeline which is fully differentiable
 - No scalar-based bottlenecks, hence higher data efficiency.
- How do we obtain latent-state neural networks that align with algorithms?

DeepMind

(Have we answered Question 1?)

- Why should we, as deep learning practitioners, study **algorithms**?
 - Further, why might it be beneficial to make 'algorithm-inspired' neural networks?

DeepMind

Algorithmic reasoning

Algorithmic reasoning

- The desiderata for our processor network **P** are slightly different than usual:
 - They are required to imitate the steps of the algorithm *faithfully*
 - This means they must **extrapolate**!
 - (Related: how to best decide the **weights** of **P** to **robustly** match the algorithm?)
- Neural networks typically **struggle** in the extrapolation regime!
- Algorithmic reasoning is an emerging area that seeks to ameliorate this issue
 - Primarily through theoretical and empirical *prescriptions*
 - These guide the neural <u>architectures</u>, <u>inductive biases</u> and <u>featurisations</u> that are useful for extrapolating combinatorially
- This is a **very** active research area, with many key papers published only last year!
 - We will navigate it by an increasingly complex sequence of *toy algorithmic problems*

Starting simple

- Input: (flat) representation of an object's features (e.g. position, shape, color...)
- **Output**: some **property** of the object (e.g. *is it round and yellow?*)

Starting simple

- Input: (flat) representation of an object's features (e.g. position, shape, color...)
- **Output**: some **property** of the object (e.g. *is it round and yellow?*)

A canonical problem solvable by a *multilayer perceptron* (MLP).

Starting simple

- Input: (flat) representation of an object's features (e.g. position, shape, color...)
- **Output**: some **property** of the object (e.g. *is it round and yellow?*)

A canonical problem solvable by a *multilayer perceptron* (MLP).

- A simple *universal approximator* that makes **no** assumptions about its input structure.
- We will now gradually introduce **inductive biases** as we learn more about our problem.
 - Every step of the way, we will **validate** our choice theoretically or empirically.
 - **N.B.** _All_ architectures considered here will be universal approximators!
 - But proper choices of biases will drastically improve learning *generalisation*.

Summary statistics

- Input: A set of 1D points, with features containing their coordinate and colour.
- **Output**: Some **aggregate** property of the set (e.g. the *furthest pairwise distance*).

(Output: <u>10</u>)

Summary statistics

- Input: A set of 1D points, with features containing their coordinate and colour.
- **Output**: Some **aggregate** property of the set (e.g. the *furthest pairwise distance*).

A **summary statistic** problem: requires reasoning about set element boundaries, computing the *maximal* and *minimal* coordinate, and subtracting them.

MLPs have no way of dealing with set boundaries! Introduce **Deep Sets.** (Zaheer *et al.*, NeurIPS 2017)

$$y = \mathrm{MLP}_2\left(\sum_{s \in S} \mathrm{MLP}_1(X_s)\right)$$

Summary statistics

- Input: A set of 1D points, with features containing their coordinate and colour.
- **Output**: Some **aggregate** property of the set (e.g. the *furthest pairwise distance*).

A **summary statistic** problem: requires reasoning about set element boundaries, computing the *maximal* and *minimal* coordinate, and subtracting them.

MLPs have no way of dealing with set boundaries! Introduce **Deep Sets.** (Zaheer *et al.*, NeurIPS 2017)

- Permutation-invariant and object-aware!
- Can be extended to powerful variants aggregating over *subsets* at a time
 - See Janossy pooling (Murphy et al., ICLR 2019)

Relational argmax

- Input: A set of 1D points, with features containing their coordinate and colour.
- **Output**: Some **relational** property of the set (e.g. the <u>colours</u> of two furthest points)

(Output: <u>red</u> and <u>purple</u>)

Relational argmax

- Input: A set of 1D points, with features containing their coordinate and colour.
- **Output**: Some **relational** property of the set (e.g. the <u>colours</u> of two furthest points)

A relational argmax problem: requires identifying an optimising (pairwise) relation.

Deep Sets at a disadvantage: output MLP must **disentangle** all pairwise relations, imposing substantial <u>pressure</u> on its internal representations. (this will be a common and recurring theme) Introduce **Graph Neural Networks** (GNNs). (Scarselli *et al.*, TNN 2009)

$$h_s^{(k)} = \sum_{t \in S} \mathrm{MLP}_1^{(k)} \left(h_s^{(k-1)}, h_t^{(k-1)} \right)$$
$$y = \mathrm{MLP}_2 \left(\sum_{s \in S} h_s^{(K)} \right)$$

Relational argmax

- Input: A set of 1D points, with features containing their coordinate and colour.
- **Output**: Some **relational** property of the set (e.g. the <u>colours</u> of two furthest points)

A relational argmax problem: requires identifying an optimising (pairwise) relation.

Deep Sets at a disadvantage: output MLP must **disentangle** all pairwise relations, imposing substantial <u>pressure</u> on its internal representations. (this will be a common and recurring theme) Introduce **Graph Neural Networks** (GNNs). (Scarselli *et al.*, TNN 2009)

- Permutation-invariant, object-aware, and **relation-aware**!
- Directly provides "pairwise embeddings" within its inductive bias
- (Powerful paradigm: higher-order relations can be decomposed into *multi-step pairwise*)

Architectures so far

MLPs ~ feature extraction

$$y = \mathrm{MLP}(||_{s \in S} X_s)$$

Deep Sets (Zaheer *et al.*, NeurIPS 2017) ~ *summary statistics*

$$y = \mathrm{MLP}_2\left(\sum_{s \in S} \mathrm{MLP}_1(X_s)\right)$$

GNNs (Scarselli *et al.*, TNN 2009)

~ (pairwise) relations

$$h_s^{(k)} = \sum_{t \in S} \operatorname{MLP}_1^{(k)} \left(h_s^{(k-1)}, h_t^{(k-1)} \right)$$
$$y = \operatorname{MLP}_2 \left(\sum_{s \in S} h_s^{(K)} \right)$$

Algorithmic alignment

- At each step, we progressively made **stronger** assumptions about what kind of reasoning our problem needed, leading to stronger *inductive biases*.
- Under this, "noise-free", *algorithmic reasoning* lens, can we formalise what it means for an inductive bias to be favourable, and **prove** that it is favourable in some circumstance?
- Yes!

(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020) WHAT CAN NEURAL NETWORKS REASON ABOUT?

- Theorem: better structural alignment implies better generalisation!
 - GNNs ~ dynamic programming

(tl;dr: it relies on PAC-like frameworks, using sample complexity as a notion of favourability)

Empirical results

Summary statistics What is the maximum value difference among treasures?

Relational argmax What are the colors of the furthest pair of objects?

Dynamic programming What is the cost to defeat monster X by following the optimal path?

Dynamic programming

- Input: A weighted graph with a provided source node
- **Output**: All **shortest paths** out of the source node (*shortest path tree*)

Dynamic programming

- Input: A weighted graph with a provided source node
- **Output**: All **shortest paths** out of the source node (*shortest path tree*)

Standard computer science task, solvable by dynamic programming methods (e.g. Bellman-Ford). Note that, at each step, Bellman-Ford **selects** an optimal neighbour in each node.

So far, we used the **sum** aggregator to aggregate GNN neighbourhoods. It is universal, but does not *align* with the task (and can lead to exploding signals)!

Introduce the **max** aggregator.

$$\vec{h}_{i}' = U\left(\vec{h}_{i}, \max_{j \in \mathcal{N}_{i}} M\left(\vec{h}_{i}, \vec{h}_{j}, \vec{e}_{ij}\right)\right)$$

Dynamic programming

- Input: A weighted graph with a provided source node
- **Output**: All **shortest paths** out of the source node (*shortest path tree*)

Standard computer science task, solvable by dynamic programming methods (e.g. Bellman-Ford). Note that, at each step, Bellman-Ford **selects** an optimal neighbour in each node.

So far, we used the **sum** aggregator to aggregate GNN neighbourhoods. It is universal, but does not *align* with the task (and can lead to exploding signals)! Introduce the **max** aggregator.

Naturally aligns with many **search-like** reasoning procedures, has explicit **credit assignment**, and is more robust to **larger-size out-of-distribution** tests!

Empirical validation into max aggregation

• A recent exploration of Transformers studies the effect of alignment on learning stability.

(Richter and Wattenhofer. 2020) Normalized Attention Without Probability Cage

• Specify a *case distinction* task that clearly aligns with max.

Max is stable under most hyperparameters!

Figure 5: Learning rate (y-axis) vs. model dimension d (x-axis) on the case distinction task with output from the first token. RGB pixel values correspond to *argmin-*, *first-* and *argmax-*mean-case-accuracies. Crosses indicate the best mean accuracy, which we report behind the model name.

Shortest paths, cont'd

- The GNN will still struggle on the shortest-path task when generalising **out-of-distribution**!
 - A critical component of proper *reasoning* systems.
- It can *overfit* to the distribution of inputs of a particular (training) size, side-stepping the actual procedure it is attempting to imitate.
- Introducing step-wise supervision.

(Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020) NEURAL EXECUTION OF GRAPH ALGORITHMS

• Instruct the GNN computation to respect the **intermediate outputs** of the algorithm! (other aspects, such as algorithm multi-task learning, are out-of-scope of this talk)

(Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020)

Neural Execution of Graph Algorithms

Supervise on appropriate output values at every step.

Bellman-Ford algorithm

Message-passing neural network

Evaluation: Shortest paths (+ Reachability)

	Predecessor (mean step accuracy / last-step accuracy)				
Model	20 nodes	50 nodes	100 nodes		
LSTM (Hochreiter & Schmidhuber, 1997)	47.20% / 47.04%	36.34% / 35.24%	27.59% / 27.31%		
GAT* (Veličković et al., 2018)	64.77% / 60.37%	52.20% / 49.71%	47.23% / 44.90%		
GAT-full* (Vaswani et al., 2017)	67.31% / 63.99%	50.54% / 48.51%	43.12% / 41.80%		
MPNN-mean (Gilmer et al., 2017)	93.83% / 93.20%	58.60% / 58.02%	44.24% / 43.93%		
MPNN-sum (Gilmer et al., 2017)	82.46% / 80.49%	54.78% / 52.06%	37.97% / 37.32%		
MPNN-max (Gilmer et al., 2017)	97.13% / 96.84%	94.71% / 93.88%	90.91% / 88.79%		
MPNN-max (<i>curriculum</i>)	95.88% / 95.54%	91.00% / 88.74%	84.18% / 83.16%		
MPNN-max (<i>no-reach</i>)	82.40% / 78.29%	78.79% / 77.53%	81.04% / 81.06%		
MPNN-max (<i>no-algo</i>)	78.97% / 95.56%	83.82% / 85.87%	79.77% / 78.84%		

Trained on 20-node graphs!

Aggregators other than max

Trained without step-wise supervision

Sequential algorithms

- Now consider algorithms such as **Prim**'s algorithm for minimum spanning trees (MST).
- This algorithm is inherently **sequential**: it adds one node at a time to the (partial) MST.

Sequential algorithms

- Now consider algorithms such as **Prim**'s algorithm for minimum spanning trees (MST).
- This algorithm is inherently **sequential**: it adds *one node at a time* to the (partial) MST.

Our previous model was forced to produce outputs for **every** node at **every** step. But in most cases, these outputs *don't change*, making the system vulnerable to overfitting.

Introduce a **sequential** inductive bias:

- At each step, select exactly **one** node to update, leaving all others unchanged.
- Can assign a score to every node by shared network, and choose **argmax**.
 - Optimise using cross-entropy on algorithm trajectories.

Evaluation: Sequential execution

	Accuracy (next MST node / MST predecessor)			
Model	20 nodes	50 nodes	100 nodes	
LSTM (Hochreiter & Schmidhuber, 1997)	11.29% / 52.81%	3.54% / 47.74%	2.66% / 40.89%	
GAT* (Veličković et al., 2018) GAT-full* (Vaswani et al., 2017)	27.94% / 61.74% 29.94% / 64.27%	22.11% / 58.66% 18.91% / 53.34%	10.97% / 53.80% 14.83% / 51.49%	
MPNN-mean (Gilmer et al., 2017) MPNN-sum (Gilmer et al., 2017) MPNN-max (Gilmer et al., 2017)	90.56% / 93.63% 48.05% / 77.41% 87.85% / 93.23%	52.23% / 88.97% 24.40% / 61.83% 63.89% / 91.14%	20.63% / 80.50% 31.60% / 43.98% 41.37% / 90.02%	
MPNN-max (no-algo)	<i>— / 71.02%</i>	<i>— / 49.83%</i>	<i>— / 23.61%</i>	

The sequential inductive bias is very **helpful**!

Incremental connectivity task

- Input: (u, v) representing an edge to add
- Queries: are nodes (i, j) connected?
- Are the input graph edges **most relevant**?
 - (relatedly: what to do when there is *no* graph?)
- Iterating only over the current graph's edges leads to **linear-time** query answering.

Connected components with disjoint-set unions

Maintaining a disjoint-set union (DSU) data structure allows answering such queries sublinearly!

GNNs with supervised pointer mechanisms

- Core idea: learn an (**auxiliary**) graph to be used for a GNN.
 - Derive based on the latent state.
 - A way to provide "global context", or refine computational graph.
- Contrary to prior work, we let each node learn **one pointer** to another node.
 - Can model (and supervise on!) many influential data structures;
 - Preserves *sparsity* (O(V) edges used);
 - Relies on step-wise *predecessor predictions*, which we already covered.

(Veličković, Buesing, Overlan, Pascanu, Vinyals and Blundell. NeurIPS 2020)

Pointer Graph Networks

Pointers through Transformers

• Compute queries, keys and attention coefficients as usual

$$\vec{q}_i = \mathbf{W}_q \vec{h}_i \qquad \vec{k}_i = \mathbf{W}_k \vec{h}_i \qquad \alpha_{ij} = \operatorname{softmax}_{j \in V} \left(\vec{q}_i^T \vec{k}_j \right)$$

• Choose the largest coefficients as new pointers, forming the **pointer adjacency matrix**:

$$\mathbf{\Pi}_{ij} = \mathbb{I}_{j=\operatorname{argmax}_k(\alpha_{ik})}$$

• Use the (symmetrised) pointer adjacency matrix to form neighbourhoods for the GNN!

$$\vec{h}_{i}^{(t)} = U\left(\vec{z}_{i}^{(t)}, \max_{\Pi_{ji}^{(t-1)}=1} M\left(\vec{z}_{i}^{(t)}, \vec{z}_{j}^{(t)}\right)\right)$$

• We optimise coefficients by using cross-entropy on ground-truth state of a *data structure*.

Masking inductive bias

• Efficient data structures are sublinear because they only *modify* a **small** fraction of (e.g. logarithmically many) nodes at once!

Masking inductive bias

- Efficient data structures are sublinear because they only *modify* a **small** fraction of (e.g. logarithmically many) nodes at once!
- Forcing to update all pointers at once is wasteful (and detrimental to performance!)
 - Let's revisit and generalise our **sequential** inductive bias!
- If we know the data structure will only update a subset of pointers at any point, we can learn to predict this <u>subset mask</u>, μ_i first -- then discard updates to other nodes.
 This inductive bias proved critical.

$$\mathbb{P}\left(\mu_{i}^{(t)}=1\right)=\psi\left(\vec{z}_{i}^{(t)},\vec{h}_{i}^{(t)}\right)$$

$$\widetilde{\mathbf{\Pi}}_{ij}^{(t)} = \mu_i^{(t)} \widetilde{\mathbf{\Pi}}_{ij}^{(t-1)} + \left(1 - \mu_i^{(t)}\right) \mathbb{I}_{j=\operatorname{argmax}_k\left(\alpha_{ik}^{(t)}\right)} \qquad \mathbf{\Pi}_{ij}^{(t)} = \widetilde{\mathbf{\Pi}}_{ij}^{(t)} \vee \widetilde{\mathbf{\Pi}}_{ji}^{(t)} \quad \bigcirc$$

(Veličković, Buesing, Overlan, Pascanu, Vinyals and Blundell. NeurIPS 2020)

Pointer Graph Network (PGN)

• Further supervised to answer queries at every point in time.

Overall PGN dataflow

PGN Results

Table 1: F_1 scores on the dynamic graph connectivity tasks for all models considered, on five random seeds. All models are trained on n = 20, ops = 30 and tested on larger test sets.

	Disjoint-set union			Link/cut tree			
Model	n=20	n = 50	n = 100	n=20	n = 50	n = 100	
	ops = 30	ops = 75	ops = 150	ops = 30	ops = 75	ops = 150	
GNN	$0.892 {\pm} .007$	$0.851 {\pm} .048$	$0.733 \pm .114$	$0.558 {\pm} .044$	$0.510 {\pm} .079$	$0.401 \pm .123$	
Deep Sets	$0.870 {\scriptstyle \pm .029}$	$0.720 {\pm} .132$	$0.547 {\scriptstyle \pm .217}$	$0.515 {\pm} .080$	$0.488 {\pm} .074$	$0.441 {\pm} .068$	
PGN-NM	$\boldsymbol{0.910} {\scriptstyle \pm .011}$	$0.628 {\pm} .071$	$0.499 {\pm} .096$	$0.524 {\pm} .063$	$0.367 {\pm} .018$	$0.353 {\pm} .029$	
PGN	$0.895 {\pm} .006$	$0.887 {\pm} .008$	$0.866 {\scriptstyle \pm .011}$	$0.651 {\scriptstyle \pm .017}$	$0.624 {\scriptstyle \pm .016}$	$0.616 {\scriptstyle \pm .009}$	
PGN-Ptrs	$0.902 \pm .010$	$0.902 {\pm} .008$	$0.889 {\pm} .007$	$0.630 {\pm} .022$	$0.603 {\pm} .036$	$0.546 \pm .110$	
Oracle-Ptrs	$0.944 {\pm} .006$	$0.964 {\pm} .007$	$0.968 {\pm .013}$	$0.776 \pm .011$	$0.744 {\pm} .026$	$0.636 {\pm} .065$	

Incremental connectivity

Fully dynamic connectivity

Trained without masking objective

Trained on ground-truth pointer graphs

Pointer accuracies

	Disjoint-set union			Link/cut tree		
Accuracy of	n = 20	n = 50	n = 100	n=20	n = 50	n = 100
	ops = 30	ops = 75	ops = 150	ops = 30	ops = 75	ops = 150
Pointers (NM)	$80.3{\scriptstyle\pm2.2\%}$	$32.9{\scriptstyle \pm 2.7\%}$	$20.3{\pm}3.7\%$	$61.3{\scriptstyle \pm 5.1\%}$	$17.8{\pm}3.3\%$	$8.4{\pm}2.1\%$
Pointers	$76.9{\scriptstyle \pm 3.3\%}$	$64.7{\scriptstyle\pm6.6\%}$	$55.0{\scriptstyle \pm 4.8\%}$	$60.0{\scriptstyle \pm 1.3\%}$	$54.7 \pm 1.9\%$	$53.2{\scriptstyle\pm2.2\%}$
Masks	$95.0{\pm}0.9\%$	$96.4{\pm}0.6\%$	$97.3{\scriptstyle \pm 0.4\%}$	$82.8{\pm}0.9\%$	$86.8{\scriptstyle\pm1.1\%}$	$91.1{\pm}1.0\%$

Table 2: Pointer and mask accuracies of the PGN model w.r.t. ground-truth pointers.

- It appears that our learnt data structure substantially **deviates** from ground-truths!
- What did it learn to do?

(Veličković, Buesing, Overlan, Pascanu, Vinyals and Blundell. NeurIPS 2020)

 $\overline{7}$

Litmus test: repeated **Union(i, i+1)**

- To illustrate the pointer structure, let's consider a toy example with:
 - n = 7 nodes
 - Sorted ascending by rank
 - Repeatedly calling *Union(i, i+1)* for all i in [0, n)
- The ground-truth DSU pointers obtained form a "worst-case"* scenario:
- We will perform a trained PGN rollout.

*not really damaging for DSU, but potentially troublesome for GNNs (large diameter).

3
PGN iterations on **Union(i, i+1)**: *initial state*

PGN iterations on **Union(i, i+1)**: (1, 2)

So far, so good....

PGN iterations on Union(i, i+1): (2, 3)

Differs from ground-truth already -- and **shallower**! Continuing from here...

PGN iterations on **Union(i, i+1)**: (3, 4)

PGN iterations on **Union(i, i+1)**: (4, 5)

6

PGN iterations on **Union(i, i+1)**: (5, 6)

PGN iterations on Union(i, i+1): (6, 7)

We recover a completely **valid** DSU tree... ...but one which cuts the diameter in **half**

⇒ more favourable for GNN!

Conditioned entirely through PGN's hidden state!

Summary

Let's think back to the **inductive biases** we've introduced, starting from a basic MLP:

- **DeepSets** ⇔ *object-level*;
- **GNNs** \Leftrightarrow relational;
- Max aggregator ⇔ search-like;
- **Step-wise imitation** ⇔ *algorithm-like*;
- Sequential bias ⇔ one-object-at-a-time;
- **Pointers** ⇔ *latent-graph-like;*
- Masking ⇔ data-structure-like.

For each bias, we had a clear motivation for why we introduced so, and an obvious means of doing either **theoretical** or **empirical** analysis.

None of the biases were too problem-specific.

In general, when solving a (reasoning) task, ask yourself:

- What is the kind of reasoning procedure I'd like my neural network to perform?
- How to **constrain** the network to compute (intermediate) results in this manner?

tl;dr of algorithmic reasoning

• Graph neural networks (GNNs) align well with dynamic programming (Xu et al., ICLR'20)

 $d_u = \min d_v + w_{vu}$

 $v \in N_1$

- Interesting inductive biases explored by Veličković et al. (ICLR'20):
 - Encode-*process*-decode from abstract inputs to outputs
 - Favour the **max** aggregation
 - Strong supervision on trajectories
- Further interesting work:
 - IterGNNs (Tang et al., NeurIPS'20)
 - Shuffle-exchange nets (Freivalds et al., NeurIPS'19)
 - PGN (Veličković et al., NeurIPS'20)
 - **PMP** (Strathmann *et al.*, ICLR'21 SimDL)
- Latest insights: *linear* algorithmic alignment is highly beneficial (Xu et al., ICLR'21)

 m_2

 m_{41}

 m_{51}

Blueprint of algorithmic reasoning

Aside: Connection to simulations

You might've come across a very exciting recent body of work for simulating **physics** with GNNs

"Learning to Simulate Complex Physics with Graph Networks" (ICML 2020)

Video page: sites.google.com/view/learning-to-simulate

DeepMind

Why are *simulations* of interest for algorithms?

(a few examples)

Physics simulations / collision detectors have *algorithms*...

```
dt = 1.0 / 60.0
a = 0.0
t1 = current_time_seconds()
while true:
    t2 = current_time_seconds()
    a += t2 - t1
    t1 = t2
    while a \ge dt:
        prevState = state
        step(state, dt)
        a -= dt
```

alpha = a / dt
render(interpolate(prevState, state, alpha))

... and *data structures*! (Quadtree / k-d tree)

Numerical integrators? (hence ODEs)

1. Start Ultimately, computers cannot *really* do **real numbers**... 2. Define function f(x,y) $\dot{\mathbf{H}}_t = \mathbf{F}(t, \mathbf{H}_t, \mathbf{\Theta})$ 3. Read values of initial condition(x0 and y0), number of steps (n) and calculation point (xn) 4. Calculate step size (h) = (xn - x0)/n5. Set i=0 6. Loop k1 = h * f(x0, y0)k2 = h * f(x0+h/2, y0+k1/2)k3 = h * f(x0+h/2, y0+k2/2)k4 = h * f(x0+h, y0+k3)k = (k1+2*k2+2*k3+k4)/6yn = y0 + ki = i + 1x0 = x0 + h $(\mathbf{X}_{t_k}, \mathcal{G}_{t_k})$ $(\mathbf{X}_{t_1}, \overline{\mathcal{G}_{t_1}})$ $(\mathbf{X}_{t_0}, \mathcal{G}_{t_0})$ y0 = yn

Simulations of life (Gillespie)

//Initialize: //Check if a transition takes place: IF Lambda<tau //no transition 01 FOR i=1,...,N 23 02 x[i] = S //set node states to S tau -= Lambda 24 **03 ENDFOR** ELSE //at least one transition 25 04 x[root] = I //set state of root node to I xi = 1. //remaining fraction of time-step 26 05 m_I = [root] //list of infected nodes 27 WHILE xi*Lambda>=tau 06 N_I = 1 //number of infected nodes DRAW z uniformly from [0,Lambda) 28 $07 N_R = 0 //number of recovered nodes$ IF z<Beta //S->I transition 29 08 Mu = mu //cumulative recovery rate 30 DRAW m at random from m_SI 09 tau = randexp(1) //draw tau \sim Exp(1) 31 x[m] = I32 APPEND m to m_I //Run through the time-steps: 33 N_I += 1 10 FOR t=0,1,...,T_simulation-1 34 Mu += mu //Update list of possible S->I transitions: 35 ELSE //I->R transition 11 CLEAR m_SI //S nodes in contact with I nodes DRAW m at random from m_I 36 FOR contact in contactLists[t] 37 x[m] = R12 38 REMOVE m from m_I (i,j) = contact 13 14 IF (x[i],x[j]) == (S,I)39 N I -= 115 APPEND i to m SI N R += 1 40 16 ELSE IF (x[i],x[j]) == (I,S)Mu -= mu 41 17 APPEND j to m_SI 42 ENDIF 18 43 xi -= tau/Lambda //update remaining fraction ENDIF //Update list of S->I transitions and rates: 19 ENDFOR M_SI = length of m_si REDO lines 11-22 20 44 Beta = beta*M SI //cumulative infection rate tau = randexp(1) //draw new tau 21 45 Lambda = Mu+Beta //cumulative transition rate ENDWHILE 22 46 ENDIF 47 //Read out the desired quantities: WRITE N_I, N_R, ... 48 **49 ENDFOR**

6

Pseudocode 1. Pseudocode for an SIR process with constant and homogeneous transition rates. C++ code for homogeneous and heterogeneous populations is found at https://github.com/CLVestergaard/TemporalGillespieAlgorithm.

A very deep connection

It should come as **no surprise** that physics-simulating GNNs are largely recommending the same inductive biases as **algorithmic reasoning** :)

(See also: Kyle Cranmer's recent guest lecture at USI Lugano)

DeepMind

(Have we answered Question 2?)

- How to **build** neural networks that behave algorithmically?
 - And why am I even telling you this in
 - a "Graph Machine Learning" course?

DeepMind

An algorithmic implicit planner

Reinforcement learning (RL) setting

Reinforcement learning (RL) setting (with *planning***)**

Reinforcement learning (RL) setting (variables)

Intro to value iteration

• Value Iteration: *dynamic programming* algorithm for **perfectly** solving an RL environment

$$v^{(t+1)}(s) = \max_{a \in \mathcal{A}_s} r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) v^{(t)}(s')$$

where v(s) corresponds to the **value** of state *s*.

• Guaranteed to converge to optimal solution (fixed-point of Bellman optimality equation)!

$$V^{\star}(s) = \max_{a \in \mathcal{A}} \left(R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V^{\star}(s') \right)$$

Optimal policy takes actions that **maximise** expected value: $\operatorname{argmax}_{a} \Sigma_{s'} V^*(s') P(s' | s, a)$

- BUT requires **full knowledge** of underlying MDP (P / R)
 - Prime target for our previously studied blueprint :)

Algorithmic reasoning over Value Iteration

- How would a human feature engineer make VI applicable?
 - Looking back to our blueprint example...
- As before, we will try to automate away the **manual** feature extraction

Latent-space transition models

- Assume we have encoded our state (e.g. with a NN) into **embeddings**, $z(s) \in \mathbb{R}^k$
- To expand a "local MDP" we can apply VI over, we can then use a transition model, T
 - $\circ \quad \text{ It is then of the form } T: \mathbb{R}^k x \text{ } A \to \mathbb{R}^k$
 - Optimised such that $T(z(s), a) \approx z(s')$
- Many popular methods exist for learning T in the context of *self-supervised learning*
- Contrastive learning methods try to discriminate (s, a, s') from negative pairs (s, a, s~)

Using a transition model to expand

We can use a learned transition model on **every** action, to be exhaustive (*~breadth-first search*)

Doesn't **scale** with large action spaces / thinking times; $O(|A|^{K})$

Can find more interesting *rollout policies*, e.g. by **distilling** well-performing **model-free** ones.

TreeQN / ATreeC

- Assume that we have reward/value models, giving us scalar values in every expanded node
- We can now **directly** apply a VI-style update rule!

$$Q(\mathbf{z}_{l|t}, a_i) = r(\mathbf{z}_{l|t}, a_i) + \begin{cases} \gamma V(\mathbf{z}_{d|t}^{a_i}) & l = d - 1\\ \gamma \max_{a_j} Q(\mathbf{z}_{l+1|t}^{a_i}, a_j) & l < d - 1 \end{cases}$$

- Can then use the computed Q-values **directly** to decide the policy
- Exactly as leveraged by models like TreeQN / ATreeC (Farquhar *et al.*, ICLR'18)
 Also related: Value Prediction Networks (Oh *et al.*, NeurIPS'17)

TreeQN / **ATreeC** in action

High-level view

• It's good to take a recap and realise what we have done so far

High-level view

- It's good to take a recap and realise what we have done so far
 - We mapped our **natural** inputs (e.g. pixels) to the space of abstract inputs
 - (local MDP + reward values in every node)
 - This allowed us to execute VI-style algorithms **directly** on the abstract inputs

• The VI update is differentiable, and hence so is our entire implicit planner.

Breaking the bottleneck

- We hit bottleneck-based *data efficiency* issues again!
 - If there are insufficient training data to properly estimate the scalars...
 - Algorithm will give a **perfect** solution, but in a *suboptimal* environment

- To break the bottleneck, we replace the VI update with a **neural network**!
- As before, we can use **graph neural networks** to perform VI-aligning computations.

Algorithmic reasoning

- GNN over state representations *aligns* with VI, but may put **pressure** on the planner
 - Same gradients used to *construct* correct graphs **and** make VI computations
- To alleviate this issue, we choose to **pre-train** the GNN to perform value iteration-style computations (over many **synthetic** MDPs), then deploying it within our planner
- This exploits, once again, the concept of *algorithmic alignment* (Xu et al., ICLR'20)

Putting it all together!

XLVIN (Deac et al., NeurIPS'20 DeepRL)

XLVIN Components

- Encoder $(z: S \rightarrow \mathbb{R}^k)$ provides state representations
- **Transition** (T: $\mathbb{R}^k \times A \to \mathbb{R}^k$) simulates effects of actions in *latent* space
 - **Pre-trained & Fine-tuned** on the TransE loss (observed trajectories)
- Executor (X: ℝ^k x ℝ^{|A|×k} → ℝ^k) simulates a planning algorithm (Value Iteration) in *latent* space
 - **Pre-trained** to execute VI on synthetic MDPs of interest, then **frozen**
- Policy / Value Head, computing action probabilities and state-values given embeddings

• Use PPO as the policy gradient method The entire procedure is end-to-end differentiable, does not impose any assumptions on the structure of the underlying MDP, and has the capacity to perform computations directly aligned with value iteration. Hence our model can be considered as a generalisation of VIN-like methods to settings where the MDP is not provided or otherwise difficult to obtain.

Results on low-data Atari

Alien

...why did it work?

- Recall, our executor network was pre-trained and **frozen**
- The pixel-level encoder needed to learn to map **rich** inputs into the executor's latent space
 - Analogous to a human who tries to map real-world problems to algorithmic inputs!
- We set out to investigate to what extent it succeeded.

Grid-world qualitative study

- We evaluate the quality of the embeddings **before** and **after** applying the executor, in a *grid-world* environment
 - Here we can compute optimal V*(s)
 - Evaluate linear decodability by linear regression!
- Results verify our hypothesis!
 - Input values are already predictive
 - But the executor consistently refines them!
- Our encoder learnt to correctly *map* the input to the latent algorithm! :)

DeepMind

(Have we answered Question 3?)

- Do algorithmic neural networks actually **work** when deployed?
 - If so, how are they actually being used?

DeepMind

Summary and conclusions

Overview, revisited

Our aim is was to address three key questions: (roughly ~20min for each)

- Why should we, as deep learning practitioners, study **algorithms**?
 - Further, why might it be beneficial to make *'algorithm-inspired'* neural networks?
- How to **build** neural networks that behave algorithmically?
 - And why am I even telling you this in a "Graph Machine Learning" course?
- Do algorithmic neural networks actually **work** when deployed?
 - If so, how are they *actually* being used?

Hopefully, also some ideas on *where* you might be able to *apply* the ideas above :)

Further insight: Algorithmic reasoning

If you would like to know more details about constructing good processor networks:

Further insight: Algorithmic implicit planning

If you would like to know more details about implicit planning and XLVIN:

https://www.youtube.com/watch?v=mGw9ewL8wCU

Further insight: graph representation learning

If GNNs are new(ish) to you, I recently gave a useful talk on **theoretical GNN foundations**: <u>https://www.youtube.com/watch?v=uF53xsT7mjc</u>

Want to know more?

Combinatorial optimization and reasoning with graph neural networks

Quentin Cappart¹, Didier Chételat², Elias Khalil³, Andrea Lodi², Christopher Morris², and Petar Veličković^{*4}

¹Department of Computer Engineering and Software Engineering, Polytechnique Montréal ²CERC in Data Science for Real-Time Decision-Making, Polytechnique Montréal ³Department of Mechanical & Industrial Engineering, University of Toronto ⁴DeepMind

Combinatorial optimization is a well-established area in operations research and computer science. Until recently, its methods have focused on solving problem instances in isolation, ignoring the fact that they often stem from related data distributions in practice. However, recent years have seen a surge of interest in using machine learning, especially graph neural networks (GNNs), as a key building block for combinatorial tasks, either as solvers or as helper functions. GNNs are an inductive bias that effectively encodes combinatorial and relational input due to their permutation-invariance and sparsity awareness. This paper presents a conceptual review of recent key advancements in this emerging field, aiming at both the optimization and machine learning researcher. Our 43-page survey on GNNs for CO!

https://arxiv.org/abs/2102.09544

Section 3.3. details algorithmic reasoning, with comprehensive references.

DeepMind

Thank you!

petarv@google.com | https://petar-v.com

In collaboration with Charles Blundell, Raia Hadsell, Rex Ying, Matilde Padovano, Andreea Deac, Ognjen Milinković, Pierre-Luc Bacon, Jian Tang, Mladen Nikolić, Christopher Morris, Quentin Cappart, Elias Khalil, Didier Chétalat, Andrea Lodi, Lovro Vrček, Mile Šikić, Lars Buesing, Matt Overlan, Razvan Pascanu and Oriol Vinyals