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Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.
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This talk!



Neural Graph-Algorithmic Reasoning

● Can neural nets robustly reason like algorithms?

● Algorithms manipulate (un)ordered sets of objects, and their relations.
⇒ They operate over graphs.
○ Supervise graph neural networks on algorithm execution tasks!

 

 

 

● Call this approach neural graph algorithm execution. 

 

 

Input OutputGNN
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● Algorithms prove very favourable
○ Infinite data
○ Complex data manipulation
○ A clear hierarchy of models emerges!

 

● A clearly specified generating function
○ No noise in the data
○ Enabling rigorous credit assignment

  

● The world is propped-up on polynomial-time algorithms
○ Applicable to NP-hard problems (see e.g. Joshi, Laurent and Bresson, NeurIPS’19 GRL)
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● Imitating individual operations enables strong generalisation.
○ Consider how humans devise algorithms “by hand”.
○ Scales to much larger test graph sizes.

 

● Grounds the GNN in the underlying algorithmic reasoning
○ Deep learning is about learning representations
○ Learn representations of manipulations!
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● Representations can positively reinforce one another!
○ Meta-representation of algorithms.
○ Plentiful opportunity for:

■ Multi-task learning
■ Meta-learning
■ Continual learning

with clearly defined task relations!

 

● Output of easier algorithm can be used as input for a harder one.
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Algorithm discovery

● Inspecting intermediate outputs of an algorithm can decode its behaviour!

 

● Opportunity for deriving novel algorithms, e.g.
○ Improved heuristics for intractable problems.
○ Optimising for GNN executors (e.g. GPU/TPU).
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● Conjecture: Can perform soft subroutine reuse from polynomial-time algorithms.



Programming language hierarchy

High level

Middle level

Low level
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GNN-Algorithmic hierarchy

Algo-level

Step-level

Unit-level

(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)

● Learns an algorithm end-to-end only
● Strong theoretical link between generalisation power and algorithmic alignment
● GNNs align well with dynamic programming!

(Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020)

● Supervises on atomic steps of an algorithm
● Out-of-distribution testing of various GNNs
● Multi-task learning + maximisation aggregators generalise stronger!

(Yan, Swersky, Koutra, Ranganathan and Hashemi. 2020)

● Learns to execute tiny operations, then composes them
● Binary encoding and conditional masking
● Achieves perfect strong generalisation!
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What Can Neural Networks Reason About?

● Which networks are best suited for certain types of reasoning?
○ Theorem: better structural alignment implies better generalisation!
○ GNNs ~ dynamic programming

(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)



Architectures under study

MLPs 

~ feature extraction

Deep Sets (Zaheer et al., NeurIPS 2017)

~ summary statistics

GNNs
~ (pairwise) relations

(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)



Empirical results
(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)



GNN-Algorithmic hierarchy

Algo-level

Step-level

Unit-level

(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)

(Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020)

(Yan, Swersky, Koutra, Ranganathan and Hashemi. 2020)



Neural Execution of Graph Algorithms

Bellman-Ford algorithm Message-passing neural network

(Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020)

Supervise on appropriate output values at every step.



Components of the executor

● Encoder network*

 

● Processor network 

 

● Decoder network* 

 

● Termination network* 

 

● Repeat as long as 

 

*algorithm-specific

● Hypothesis: MPNN-max is a highly suitable processor

(Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020)



Evaluation

● Evaluate on parallel and sequential algorithms.
○ Parallel: Reachability (BFS), Shortest paths (Bellman-Ford)
○ Sequential: Minimal spanning trees (Prim)
○ Explicit inductive bias on sequentiality (learnable mask!)

● Generate graphs from a wide variety of distributions:
○ Ladder, Grid, Tree, 4-Caveman, 4-Community, Erdős-Rényi, Barabási-Albert
○ Attach random-valued weights to each edge

 

● Study the “human-programmer” perspective: test generalisation from small graphs (20 
nodes) to larger graphs (50/100 nodes).

 

● Learn to execute BFS and Bellman-Ford with same processor!

(Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020)



Evaluation: Shortest paths (+ Reachability)

Trained without reachability objective Trained without step-wise supervision

Trained on 20-node graphs!

(Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020)



Evaluation: Sequential execution

The sequential inductive bias is very helpful!

(Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020)
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Neural Execution Engines

● Teach a neural net to strongly perform tiny tasks (e.g. sum, product, argmin)
○ Compose tasks to specify algorithms
○ The building blocks must stay robust with long/OOD rollouts!

 

● Key components:
○ Bitwise embeddings
○ Transformers
○ Conditional masking

(Yan, Swersky, Koutra, Raganathan and Hashemi. 2020)



Learning to selection sort by composing argmin
(Yan, Swersky, Koutra, Raganathan and Hashemi. 2020)
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Composing subroutines (Dijkstra)
(Yan, Swersky, Koutra, Raganathan and Hashemi. 2020)



Recursive subroutines (Merge sort)
(Yan, Swersky, Koutra, Raganathan and Hashemi. 2020)



Conclusions

● Algorithmic reasoning is an exciting novel area for graph representation learning! 
○ Three concurrent works explore it at different levels:

■ Algo-level (Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)
■ Step-level (Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020)
■ Unit-level (Yan, Swersky, Koutra, Raganathan and Hashemi. 2020)

● Many questions left to be answered, at all levels of the hierarchy!
○ <Your contribution here/>



In collaboration with Charles Blundell, Raia Hadsell, Rex Ying, Matilde Padovano, 
Lars Buesing, Matt Overlan, Razvan Pascanu and Oriol Vinyals

Thank you!

Questions?

petarv@google.com | https://petar-v.com

mailto:petarv@google.com
https://petar-v.com

