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Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.



Problem-solving approaches
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Neural networks

Operate on raw inputs
Generalise on noisy conditions
Models reusable across tasks
Require big data

Unreliable when extrapolating
Lack of interpretability

+ + + +

Algorithms

Trivially strongly generalise
Compositional (subroutines)
Guaranteed correctness
Interpretable operations
Inputs must match spec

Not robust to task variations
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Neural Graph-Algorithmic Reasoning

e Can neural nets robustly reason like algorithms?

e Algorithms manipulate (un)ordered sets of objects, and their relations.

= They operate over graphs.
o Supervise graph neural networks on algorithm execution tasks!

GNN Output

e Call this approach neural graph algorithm execution. @
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Benchmarking GNNs

e Popular GNN benchmark datasets often unreliable

Pitfalls of Graph Neural Network Evaluation

Oleksandr Shchur; Maximilian Mumme; Aleksandar Bojchevski, Stephan Giinnemann
Technical University of Munich, Germany
{shchur ,mumme,a. bojchevski,guennemann}@in.tum.de

On Graph Classification Networks, Datasets and Baselines

Enxhell Luzhnica®! Ben Day ™! Pietro Lio!
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DATASETS
MODEL REDDIT 2 DD COLLAB PROT.
PATCHYSAN 41.32 76.27 72.60 75.00
GRAPHSAGE 42.24 75.42 68.25 70.48
ECC 41.73 74.10 67.79 72.65
SET2SET 43.49 78.12 T1.75 74.29
SORTPOOL 41.82 79.37 73.76 75.54
DIFFPOOL-DET 46.18 75.47 82.13 75.62
DI1FFPOOL-NOLP 46.65 79.98 75.63 77.42
Di1rFrFPOOL 47.08 81.15 75.50 78.10
GU-NET/SHGC - 78.59  74.54  75.46
MLP 40.96 8022  74.00 75.74
GCN(R)-MLP 36.15  78.61  75.38  76.28
GCN-MLP 4501 7929 7650  75.64
JK-Sum 47.16 79.02 77.00 75.82
JK-SUM-DECAY 43.87 79.11 74.14 75.82
JK-SUM-REINIT 46.77 75.97 77.20 75.46

MLP

LogReg
LabelProp
NL LabelProp
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Benchmarking GNNs

o Complexity not very high

Simplifying Graph Convolutional Networks

Our experiments:

Felix Wu"! Tianyi Zhang“! Amauri Holanda de Souza Jr.”!? Christopher Fifty! Tao Yu'
Kilian Q. Weinberger '

K-step Feature Propagation

Y K
L X+S*"X )

YSGC — softmax (SK X@)

GCN 81.4+0.4 70.9 + 0.5 79.0 +0.4
GAT 83.3+ 0.7 72.6 + 0.6 78.5+0.3
FastGCN 79.8 +£0.3 68.8 £ 0.6 77.4+0.3
GIN 776 +1.1 66.1 £0.9 77.0+£ 1.2
LNet 80.2+3.0" | 67.3+£0.5 | 78.3+0.6
AdaLNet | 81.9+1.9" | 70.6+0.8" | 77.8 £ 0.7
DGI 82.5+ 0.7 71.6 = 0.7 78.4 + 0.7
SGC 81.0+ 0.0 71.9+0.1 78.9 + 0.0
Setting | Model | Test F1

GaAN 96.4

SAGE-mean 95.0
Supervised SAGE-LSTM 95.4

SAGE-GCN 93.0

FastGCN 93.7

GCN OOM

SAGE-mean 89.7
Unsupervised | SAGE-LSTM 90.7

SAGE-GCN 90.8

DGI 94.0
No Learning Random-Init DGI | 93.3

SGC 94.9 @




Benchmarking GNNs

e Algorithms prove very favourable

o Infinite data

o Complex data manipulation
o A clear hierarchy of models emerges!
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Benchmarking GNNs

Popular GNN benchmark datasets often unreliable

(@)

Complexity not very high

Algorithms prove very favourable
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Infinite data
Complex data manipulation
A clear hierarchy of models emerges!

A clearly specified generating function
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No noise in the data
Enabling rigorous credit assignment
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Benchmarking GNNs

e The world is propped-up on polynomial-time algorithms
o Applicable to NP-hard problems (see e.g. Joshi, Laurent and Bresson, NeurlPS'19 GRL) @
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Strong generalisation

e Learning an algorithm is not learning input-output mapping!

Targets

Outputs

410.5

Targets

Outputs

Time » T

(Graves et al., 2014) @



Strong generalisation

e Imitating individual operations enables strong generalisation.

o Consider how humans devise algorithms “by hand”.
o Scales to much larger test graph sizes.

Table 1. Performance of different tasks on variable sizes of test
examples (trained with examples of size 8)

N‘ 25 50 75 100
Selectionsort | 100.00 100.00 100.00 100.00
Mergesort | 100.00 10000 100.00 100.00
Shortestpaths | 100.00 100.00 100.00 100.00*

O



Strong generalisation

e Grounds the GNN in the underlying algorithmic reasoning
o Deep learning is about learning representations
o Learn representations of manipulations!
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Multi-task learning

e Learning representations of manipulations
= lots of potential for representational reuse.
o Many algorithms share subroutines.

MST-PRIM(G,w,s) DUKSTRA(G,w,s)

1 foreachue GV 1 foreachue G.V

2 u.key = oo 2 u.key = oo

3 u.T = NIL 3 u.T = NIL

4 skey=0 4 s.key =0

5 0=GV 5 0=GV

6 while Q #0 6 while 9 #0

7 u = EXTRACT-MIN(Q) 7 u = EXTRACT-MIN(Q)

8 for each v € G.Ad j[u] 8 for each v € G.Ad j[u]

9 ifve Qand w(u,v) < v.key 9 if u.key +w(u,v) < v.key
10 DECREASE-KEY(Q,v,w(u,v)) 10 DECREASE-KEY(Q,v,u.key +w(u,v))
11 VT =u 11 VT =1u

O



Multi-task learning

e Representations can positively reinforce one another!
o Meta-representation of algorithms.
o  Plentiful opportunity for:
m  Multi-task learning
m Meta-learning
m  Continual learning

with clearly defined task relations!




Multi-task learning

e Learning representations of manipulations
= lots of potential for representational reuse.
o Many algorithms share subroutines.

e Representations can positively reinforce one another!
o Meta-representation of algorithms.
o  Plentiful opportunity for:
m  Multi-task learning
m Meta-learning
m Continual learning

with clearly defined task relations!

e Output of easier algorithm can be used as input for a harder one.

O
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Algorithm discovery

e Inspecting intermediate outputs of an algorithm can decode its behaviour!

e Opportunity for deriving novel algorithms, e.g. 4@

o Improved heuristics for intractable problems.
o  Optimising for GNN executors (e.g. GPU/TPU).

O



Algorithm discovery

e Machine learning < Competitive programming!
o My way into computer science :)

Ophere online judge
ls CODEFORCES

gg
icpc

t national Collegiate
gammlgC ntest

O



Algorithm discovery

e Conjecture: Can perform soft subroutine reuse from polynomial-time algorithms.

O



Programming language hierarchy

‘ High level
Ll

Middle level

Low level

o




GNN-Algorithmic hierarchy

(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)
WHAT CAN NEURAL NETWORKS REASON ABOUT? Algo-level

(Velickovic, Ying, Padovano, Hadsell and Blundell. ICLR 2020)
NEURAL EXECUTION OF GRAPH ALGORITHMS Step-level

(Yan, Swersky, Koutra, Ranganathan and Hashemi. 2020)
NEURAL EXECUTION ENGINES Unit-level

O



GNN-Algorithmic hierarchy

(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)

e |earns an algorithm end-to-end only Algo-level
e Strong theoretical link between generalisation power and algorithmic alignment
e GNNs align well with dynamic programming!

(Velickovic, Ying, Padovano, Hadsell and Blundell. ICLR 2020)

e Supervises on atomic steps of an algorithm Step-level
e Out-of-distribution testing of various GNNs
e Multi-task learning + maximisation aggregators generalise stronger!

(Yan, Swersky, Koutra, Ranganathan and Hashemi. 2020)

e |earns to execute tiny operations, then composes them Unit-level
e Binary encoding and conditional masking
e Achieves perfect strong generalisation!

O



GNN-Algorithmic hierarchy

(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)
WHAT CAN NEURAL NETWORKS REASON ABOUT? | Algo-level

(Velickovic, Ying, Padovano, Hadsell and Blundell. ICLR 2020)
NEURAL EXECUTION OF GRAPH ALGORITHMS Step-level

(Yan, Swersky, Koutra, Ranganathan and Hashemi. 2020)
NEURAL EXECUTION ENGINES Unit-level
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(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)

What Can Neural Networks Reason About?

e Which networks are best suited for certain types of reasoning?
o Theorem: better structural alignment implies better generalisation!
o  GNNs ~ dynamic programming

Graph Neural Network Bellman-Ford algorithm

[ for u in 5: VI RTCPSEISERER for u in S: |
hy® = 3, MLP(hy1), hyk1) d[k][u] = miny d[k-1][v] + cost (v, u)

Learns a simple reasoning step

Answer|k|[i] = DP—Uate({Answer[k —1]lj], 7=1...n})

\
\

k — k—1
R = MLP{ (R0, {*1)

tesS

o



(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)

Architectures under study

MLPs y = MLP(||sesX;)

~ feature extraction

~ summary statistics

Deep Sets (Zaheer et al, NeurlPS 2017) y = MLP, (Z MLP1(XS)>

ses

_ k—
hgk) = E MI,ng) (hgk 1),h§ 1)>

~ (pairwise) relations y = MLP, (Z th)> @

seS




Empirical results

Summary statistics
What is the maximum value
difference among treasures?

Relational argmax
What are the colors of the
furthest pair of objects?

Dynamic programming
What is the cost to defeat monster X
by following the optimal path?

(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)

100%  95%  93%  g79, 100%

9%

HRN Deep MLP Sorted
Sets MLP

GNN3 GNN1

95%  92%  93%
21% 9%

HRN Deep MLP
Sets

GNN3 GNNT

95%  94%  90%

62%
11% 7%

Deep MLP
Sets

GNN7 GNN4 GNN3 GNN2 GNN1

O



GNN-Algorithmic hierarchy

(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)
WHAT CAN NEURAL NETWORKS REASON ABOUT? Algo-level

(Velickovic, Ying, Padovano, Hadsell and Blundell. ICLR 2020)
NEURAL EXECUTION OF GRAPH ALGORITHMS | Step-level

(Yan, Swersky, Koutra, Ranganathan and Hashemi. 2020)
NEURAL EXECUTION ENGINES Unit-level

O



(Velickovic, Ying, Padovano, Hadsell and Blundell. ICLR 2020)

Neural Execution of Graph Algorithms

Supervise on appropriate output values at every step.

A HAD A1)
M (#9549, &)

&) (t)

A o2 : : ;
" g (i)-.fi),i))
M (4,49, 40)
) L (t) supervise
min , MIN Ty + €yy {t) ; At) At) At)
( (vau)€EE l ‘ > U (zu .'-(l ?GEJI (~u s 2, Cou

Bellman-Ford algorithm Message-passing neural network @



(Velickovic, Ying, Padovano, Hadsell and Blundell. ICLR 2020)

Components of the executor | |

Encoder network* z_;(t) :fA(fE’z('t),Ez(t_l)) ' B '

e Processor network H(t) = P(Z(t)aE(t))

e Decoder network* gﬁt) = gA(Zét),’—iz('t))

e Termination network* T(t) = U(TA(H(t)))
e Repeataslongas 7() > (.5

*algorithm-specific

e Hypothesis: MPNN-max is a highly suitable processor @



(Velickovic, Ying, Padovano, Hadsell and Blundell. ICLR 2020)

Evaluation

Evaluate on parallel and sequential algorithms.
o Parallel: Reachability (BFS), Shortest paths (Bellman-Ford)
o  Sequential: Minimal spanning trees (Prim)
o  Explicit inductive bias on sequentiality (learnable mask!)

e Generate graphs from a wide variety of distributions:
o Ladder, Grid, Tree, 4-Caveman, 4-Community, Erdés-Rényi, Barabasi-Albert
o Attach random-valued weights to each edge

e Study the “human-programmer” perspective: test generalisation from small graphs (20
nodes) to larger graphs (50/100 nodes).

e Learn to execute BFS and Bellman-Ford with same processor!

O



Evaluation: Shortest paths (+ Reachability)

(Velickovic, Ying, Padovano, Hadsell and Blundell. ICLR 2020)

Predecessor (mean step accuracy / last-step accuracy)

Model 20 nodes 50 nodes 100 nodes

LSTM (Hochreiter & Schmidhuber, 1997) 47.20% / 47.04% 36.34% / 35.24% 27.59% 1 27.31%

GAT* (Velickovi€ et al., 2018) 64.77% 1 60.37% 52.20% / 49.71% 47.23% | 44.90%

GAT-full* (Vaswani et al., 2017) 67.31% / 63.99% 50.54% [/ 48.51% 43.12% / 41.80%

MPNN-mean (Gilmer et al., 2017) 93.83% / 93.20% 58.60% / 58.02% 44.24% | 43.93%

MPNN-sum (Gilmer et al., 2017) 82.46% / 80.49% 54.78% [ 52.06% 37.97% [/ 37.32%

MPNN-max (Gilmer et al., 2017) 97.13% /96.84% 94.71% / 93.88% | 90.91% / 88.79 %
MPNN-max (curriculum) 95.88% / 95.54% 91.00% / 88.74% 84.18% / 83.16%

MPNN-max 82.40% [ 78.29% 78.79% [ 77.53% 81.04% / 81.06%

MPNN-max 78.97% 1 95.56% 83.82% / 85.87%

Trained on 20-node graphs!

79.77% 178.84%

Trained without reachability objective

Trained without step-wise supervision

| ©




Evaluation: Sequential execution

(Velickovic, Ying, Padovano, Hadsell and Blundell. ICLR 2020)

Accuracy (next MST node / MST predecessor)

Model 20 nodes 50 nodes 100 nodes

LSTM (Hochreiter & Schmidhuber, 1997) 11.29% /52.81% 3.54% [/ 47.74% 2.66% [/ 40.89%
GAT* (Velickovi€ et al., 2018) 27.94% [/ 61.74% 22.11% / 58.66% 10.97% / 53.80%
GAT-full* (Vaswani et al., 2017) 29.94% | 64.27% 18.91% / 53.34% 14.83% / 51.49%
MPNN-mean (Gilmer et al., 2017) 90.56% / 93.63% 52.23% / 88.97% 20.63% / 80.50%
MPNN-sum (Gilmer et al., 2017) 48.05% / 77.41% 24.40% / 61.83% 31.60% / 43.98%
MPNN-max (Gilmer et al., 2017) 87.85% / 93.23% 63.89% /91.14% 41.37% / 90.02%
MPNN-max (no-algo) —/71.02% —/49.83% —/23.61%

The sequential inductive bias is very helpful!

o



GNN-Algorithmic hierarchy

(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)
WHAT CAN NEURAL NETWORKS REASON ABOUT? Algo-level

(Velickovic, Ying, Padovano, Hadsell and Blundell. ICLR 2020)
NEURAL EXECUTION OF GRAPH ALGORITHMS Step-level

(Yan, Swersky, Koutra, Ranganathan and Hashemi. 2020)
NEURAL EXECUTION ENGINES | Unit-level

O




(Yan, Swersky, Koutra, Raganathan and Hashemi. 2020)

Neural Execution Engines

e Teach a neural net to strongly perform tiny tasks (e.g. sum, product, argmin)
o Compose tasks to specify algorithms
o The building blocks must stay robust with long/OOD rollouts!

| Output value Output pointer |
| |
e Key components: | y3 o | 1|0 ]
o Bitwise embeddings | |
|
o Transformers : |
' N
o Conditional masking | l "
[ |
| Graph Attention ‘l—{ Temporal CNN ]
I Network I
| | Mask update
| - P l
| |
[ |
[ |
|| x1 | x2 | x3 b1 | b2 | b3 <t q
| l b
et Mask_



(Yan, Swersky, Koutra, Raganathan and Hashemi. 2020)

Learning to selection sort by composing argmin

data

selection_sort(data):
sorted_list =[]
while (len(data) > 0):

Neural Execution

data.delete(min_index) .
sorted_list.append(min_element) Engine
return sorted_list

find_min(data):

min_element = -1
min_index = -1 learned mask

for index, element in enumerate(data): min_element
if (element < min_element):
min_element = element

sorted list
return [min_index, min_element] - @

append( )



(Yan, Swersky, Koutra, Raganathan and Hashemi. 2020)

Learning to selection sort by composing argmin

—NEE
Modified transformer
—Vanilla transformer

(00}
o

Accuracy @
Models seq len = 8

NEE 100.00%

\ 1S | VAR /4

N
o

Vanilla transformer 97.66%

Accuracy (%)
(@))
o

0 | | |
8 20 40 60 80 100

Length of Test Sequences

0 20 40 60 80 100 0 20 40 60 80 100 @
(a) Fuzzy Attention (b) Clear Attention

(seq2seq) (Selection Sort NEE)



Composing subroutines (Dijkstra)

shortest_path(graph, source_node, shortest_path):

dists =[]

nodes =[]

anchor_node = source_node
node_list = graph.get_nodes()

while node_list:

anchor _node

possible_paths = sum(graph.adjanchor_node),
shortest_path(anchor_node))

I shortest_path = min(possible_paths, shortest_path) |

I anchor_node, min_dist = min(shortest_path)

node_list.delete(anchor_node)
nodes.append(anchor_node)
dists.append(min_dist)

return dists, nodes

anchor node append( )
(learned _mask

(Yan, Swersky, Koutra, Raganathan and Hashemi. 2020)

shortest _path

F

Neural Execution
Engine

ossible paths

graph.adj

Neural Execution
Engine

shortest _path

Neural Execution
Engine

min _dist

O

nodes dists



Recursive subroutines (Merge sort)
merge_sort(data, start, end):
if (start < end):
mid = (start + end ) / 2

merge_sort(data, start, mid)
merge_sort(data, mid+1, end)

merge(data, start, mid, end)

Table 1. Performance of different tasks on variable sizes of test
examples (trained with examples of size 8)

w 25 50 75 100
Accuracy

Selection sort ‘ 100.00 100.00 100.00 100.00
Merge sort ‘ 100.00 100.00 100.00 100.00
Shortest paths ‘ 100.00 100.00 100.00 100.00*

(Yan, Swersky, Koutra, Raganathan and Hashemi. 2020)

data end-start

I reshape() I

Neural Execution
Engine

partially sorted data learned mask

O



Conclusions

e Algorithmic reasoning is an exciting novel area for graph representation learning!
o Three concurrent works explore it at different levels:
m Algo-level (Xu, Li Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)
m Step-level (Velickovic, Ying, Padovano, Hadsell and Blundell. ICLR 2020)
m Unit-level (Yan, Swersky, Koutra, Raganathan and Hashemi. 2020)

e Many questions left to be answered, at all levels of the hierarchy!
0 <Your contribution here/>
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DeepMind

Thank you!

Questions?

petarv@google.com | https://petar-v.com

In collaboration with Charles Blundell, Raia Hadsell, Rex Ying, Matilde Padovano,
Lars Buesing, Matt Overlan, Razvan Pascanu and Oriol Vinyals
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