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Overview

Our aim is to address three key questions: (roughly ~10min for each)

e Why should we, as deep learning practitioners, study algorithms?
o Further, why might it be beneficial to make ‘algorithm-inspired’ neural networks?

e How to build neural networks that behave algorithmically?
o And why am | even telling you this in a “Graph Machine Learning” context?

e Do algorithmic neural networks actually work when deployed?
o If so, how are they actually being used?

Hopefully, also some ideas on where you might be able to apply the ideas above :)
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Why algorithms?

e Essential “pure” forms of combinatorial reasoning
o ‘Timeless’ principles that will remain regardless of the model of computation
o Completely decoupled from any form of perception*

*though perception itself may also be expressed in the language of algorithms

O



Why algorithms?

Essential “pure” forms of combinatorial reasoning

(@)

@)

‘Timeless’ principles that will remain regardless of the model of computation
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Trivial strong generalisation

Compositionality via subroutines

Provable correctness and performance guarantees
Interpretable operations / pseudocode
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Why algorithms?

e Essential “pure” forms of combinatorial reasoning
o ‘Timeless’ principles that will remain regardless of the model of computation
o Completely decoupled from any form of perception*

e Favourable properties
o  Trivial strong generalisation
o Compositionality via subroutines
o Provable correctness and performance guarantees
o Interpretable operations / pseudocode

e Hits close to home
o  Algorithms and competitive programming are how | got into Computer Science
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and the
Ford-Fulkerson
algorithm
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Maximum flow problem

e Flow network: graph G = (V, E), augmented with a capacity function, c:V x V — R*
o Capacity ¢ denotes how much flow is allowed on (u, v) edge

Two special nodes: source, s, and sink, t
o Source unleashes “infinite” capacity, sink receives “infinite” capacity

A flow in G is any mapping f: V x V — R*, such that:
Vu,v eV fu,v = Cu,v

Vu e V\{s,t} Y fou = D fuw

veV veV

The value of a flow is the total flow emanating from the source: Z fs,v — Z fv,s
o  We are interested in maximising it! veV veV
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Max-flow example (f=17)




Ford-Fulkerson’s Algorithm

e Such arigorously defined problem often admits remarkably elegant and provably correct
algorithm blueprint!

FORD-FULKERSON-METHOD (G, s, t)

1 initialize flow f to 0 *representing the capacities that remain after applying f
2 while there exists an augmenting path p in the residual network Gy

3 augment flow f along p

4 return f

e Many specific ways to find p yield different algorithms (e.g. Edmonds-Karp, Dinitz, etc...)
o This can be proven to terminate with correct solution
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Ford-Fulkerson in action

Q
Ny

0/10
S >




Ford-Fulkerson in action

Q
Ay

0/10
S >




Ford-Fulkerson in action
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Ford-Fulkerson in action




Ford-Fulkerson in action
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(the flow may also be returned!)




Final solution!




Max-flow Min-cut theorem

Observing data in this way, also yields easy observation of connections, hence theorems!

Theorem 26.6 (Max-flow min-cut theorem)
If f is a flow in a flow network G = (V, E) with source s and sink ¢, then the
following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network G contains no augmenting paths.
3. |f| =c(S,T) for some cut (S,7) of G.
3/4
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“Fundamentals
of a method for
evaluating rail
net capacities”

(Harris & Ross, 1955) @



The core problem

e Classical algorithms are designed with abstraction in mind, enforcing their inputs to
conform to stringent preconditions.
o Keeping the inputs constrained enables an uninterrupted focus on “reasoning”
o Easily certify the resulting procedure’s correctness, i.e., stringent postconditions

e However, we must never forget why we design algorithms!

e Unfortunately, this is at timeless odds with the way they are designed
o Let's study an example from the 1950s.
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Original interest in flows

SECRET

U. S AR TR

PROJECT RAND

RESEARCH MEMORANDUM
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FUNDAMENTALS OF A METHOD FOR EVALUATING
RAIL NET CAPACITIES (U)

T. E. Harris

F. S. Ross
. sy
October 24. 1955 CODy ,NO- 3L )
CEFSEE, S e, G, S s S K SPMSSRME R TS S e
This matenal ¢ontains information atfcchng the notional defense of the Umted Siotes, witkin
the meaning of the vspronage laws, Title 18 U S.¢, Secs 793 and 794 the transmissivn or the

revelation of which 11 any manned 10 an unavibcrized peeson 1s prohibited by faw

SUMMARY

Afir power is an effective means of interdicting an enemy's
rall system, and such usage is a logical and important mission
for this Arm,

As in many military operations, hovever, the success of inter-
diction depends largely on how complete, accurate, and timely is
the commander's information, particularly concerning the effect of
his interdiction-program efforts on the enemy's cepability to move
men and supplies. This information should be avzilable at the

time the resulis are being achieved.

https://apps.dtic.mil/dtic/tr/fulltext/u2/093458.pdf
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https://apps.dtic.mil/dtic/tr/fulltext/u2/093458.pdf

The Warsaw Pact railway network

Find “the bottleneck”, i.e.
the minimum cut.

As we know, this is directly
related to computing the
maximum flow.

(this was intuitively assumed by
Harris & Ross as well)




The core problem, as seen in 1955

TI., THE RSTIMATING OF RAILWAY CAPACITIES

The evaluation of both railway system and individual track
capaciiies 18, tc a cenociderable extent; an art, The authors know
of no tested mathematical model or formla that includes all of the
varistions and imponderables that must be weighed.* Even when the
individual has been closely agsociated with the particular terri-
tory he 1s evaluabing, the final answer, however accurate, is

largely ong of judgment and experience,
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An important issue for the community

The “core problem” plagues applications of classical combinatorial algorithms to this day!

Satisfying their preconditions necessitates converting inputs into an abstractified form

If done manually, this often implies drastic information loss

o Combinatorial problem no longer accurately portrays the dynamics of the real world.

o Algorithm will give a perfect solution, but in a useless environment

The data we need to apply the algorithm may be only partially observable
o This can often render the algorithm completely inapplicable.

An issue of high interest for both combinatorial and operations research communities.
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Towards a
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Abstractifying the core problem

e Assume we have real-world inputs, but our algorithm only admits abstract inputs

(@)

<

—E

O
O

_

]_

| ,%.
.359.

For now, we assumed manually converting from one input to another
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Abstractifying the core problem

e Assume we have real-world inputs, but our algorithm only admits abstract inputs
o  For now, we assumed manually converting from one input to another
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e Whenever we have manual feature engineering of raw data, neural nets are attractive! b’



Attacking the core problem

e First point of attack: “good old deep learning”
o Replace human feature extractor with neural network
o Still apply the same combinatorial algorithm

x > T -> Y

Natural inputs Abstract inputs Abstract outputs

e Firstissue: algorithms typically perform discrete optimisation
o This does not play nicely with gradient-based optimisation that neural nets require. @



Backpropagating through classical algorithms

Vlastelica et al. provide a great approach for differentiating CO solver outputs

DIFFERENTIATION OF BLACKBOX COMBINATORIAL
SOLVERS

Marin Vlastelica'*, Anselm Paulus'*, Vit Musil?, Georg Martius', Michal Rolinek!

learned solver
) representation output

Input (e.g. image) - -
- W y(w)

> — Loss
- df/\ ﬂ . %
L dw dy dy
more NN layers ‘qi

NN layers / convolutions Blackbox combinatorial solver (optional)



Black-box backprop

Input
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g 0 = 1

k x k indicator matrix
of shortest path
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Algorithmic bottleneck

e Second (more fundamental) issue: data efficiency
o Real-world data is often incredibly rich
o  We still have to compress it down to scalar values

e The algorithmic solver:
o Commits to using this scalar
o Assumes it is perfect!

e If there are insufficient training data to properly estimate the scalars, we hit same issues!
o Algorithm will give a perfect solution, but in a suboptimal environment

O



Breaking the bottleneck

e Neural networks derive great flexibility from their latent representations
o They are inherently high-dimensional
o If any component is poorly predicted, others can step in and compensate!

e To break the bottleneck, we replace the algorithm with a neural network!

—> U

X

) Encoder Decoder
Natural inputs Latent state Natural outputs

(The setting naturally aligns with encode-process-decode (Hamrick et al, CSS'18))

o



Properties of this construction

e Assuming our latent-state NN aligns with the steps of an algorithm, we now have:
o An end-to-end neural pipeline which is fully differentiable
o No scalar-based bottlenecks, hence higher data efficiency.

e How do we obtain latent-state neural networks that align with algorithms?

—> U

X

) Encoder Decoder
Natural inputs Latent state Natural outputs
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Algorithmic reasoning

The desiderata for our processor network P are slightly different than usual:
o They are required to imitate the steps of the algorithm faithfully
o This means they must extrapolate!
o (Related: how to best decide the weights of P to robustly match the algorithm?)

Neural networks typically struggle in the extrapolation regime!

Algorithmic reasoning is an emerging area that seeks to ameliorate this issue
o  Primarily through theoretical and empirical prescriptions
o These guide the neural architectures, inductive biases and featurisations that are
useful for extrapolating combinatorially

This is a very active research area, with many key papers published only last year!

O



tl;dr of algorithmic reasoning

e Graph neural networks (GNNs) align well with dynamic programming (Xu et al,, ICLR'20)

e Interesting inductive biases explored by Veli¢kovi¢ et al. (ICLR20):
o Encode-process-decode from abstract inputs to outputs
o Favour the max aggregation T'l’
o  Strong supervision on trajectories

e Further interesting work: dy =
o IterGNNs (Tang et al, NeurlPS'20)
o  Shuffle-exchange nets (Freivalds et al, NeurlPS'19)
o PGN (Velickovi¢ et al., NeurlPS'20) h
o PMP (Strathmann et al,, ICLR’21 SimDL)

e Latest insights: linear algorithmic alignment is highly beneficial (Xu et al,, ICLR'21) @



Blueprint of algorithmic reasoning
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Blueprint of algorithmic reasoning, in-depth
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Reinforcement learning (RL) setting

act
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Reinforcement learning (RL) setting (with planning)

updats

observe
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Reinforcement learning (RL) setting (variables)

action, a
policy, i(a | s) 1
update
state, s
observe

reward, r ; state, s’

transitions, P(s' | s, a)

rewards, R(s, a)

o



Reinforcement learning (RL) setting Want to optimise:

action, a Discounted
i cumulative reward

policy, m(a | s)

state, s

G= th 0 ytrt

transitions, P(s' | s, a)

update

rewards, R(s, a)

observe
reward, r ; state, s’ @



Intro to value iteration

e Value Iteration: dynamic programming algorithm for perfectly solving an RL environment

vl (s) = max r(s,a) + 7y %p(S’Is, a)v')(s')
where v(s) corresponds to the value of state s.

e Guaranteed to converge to optimal solution (fixed-point of Bellman optimality equation)!

V*(s) = max (R(s, a)+ Z P(s|s, a)V*(s’))

acA
s’eS

Optimal policy takes actions that maximise expected value: argmax_2_ V*(s") P(s' | s, a)

e BUT requires full knowledge of underlying MDP (P / R)
o  Prime target for our previously studied blueprint :)

O



Algorithmic reasoning over Value Iteration

e How would a human feature engineer make VI applicable?
o Looking back to our blueprint example...

e As before, we will try to automate away the manual feature extraction

+1 +1

— | —
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> 7 > Y
Natural inputs Abstract inputs Abstract outputs
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Latent-space transition models

Assume we have encoded our state (e.g. with a NN) into embeddings, z(s) € Rk

To expand a “local MDP” we can apply VI over, we can then use a transition model, T
o Itisthen of the form T:Rx A — R*
o  Optimised such that T(z(s), a) = z(s")

Many popular methods exist for learning T in the context of self-supervised learning

Contrastive learning methods try to discriminate (s, a, s’) from negative pairs (s, a, s”)

O



Using a transition model to expand

We can use a learned transition
model on every action, to be
exhaustive (~breadth-first search)

Doesn’t scale with large action
spaces / thinking times; O(IA[X)

Can find more interesting rollout
policies, e.g. by distilling
well-performing model-free ones.

Construct latent graph using 7

O



TreeON / ATreeC

Assume that we have reward/value models, giving us scalar values in every expanded node

e We can now directly apply a VI-style update rule!

W (z5,) [=d—

Q(zyt, ai) = r(2yt, a;) + ymax,, Q(zl+1lt’ a;) l<d-—1

Can then use the computed Q-values directly to decide the policy

Exactly as leveraged by models like TreeQN / ATreeC (Farquhar et al,, ICLR18)
o Also related: Value Prediction Networks (Oh et al., NeurlPS'17)

o



TreeON / ATreeC in action
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High-level view

e |t's good to take a recap and realise what we have done so far

---F

Natural inputs Abstract inputs Abstract outputs
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High-level view

e |t's good to take a recap and realise what we have done so far
o We mapped our natural inputs (e.g. pixels) to the space of abstract inputs
o (local MDP + reward values in every node)
o This allowed us to execute VlI-style algorithms directly on the abstract inputs

x > T > Y

Natural inputs Abstract inputs Abstract outputs

e The Vlupdate is differentiable, and hence so is our entire implicit planner.

O



Breaking the bottleneck

e We hit bottleneck-based data efficiency issues again!
o If there are insufficient training data to properly estimate the scalars...
o Algorithm will give a perfect solution, but in a suboptimal environment

£x > Z > Y

Natural inputs Latent state Natural outputs

e To break the bottleneck, we replace the VI update with a neural network!

e As before, we can use graph neural networks to perform VlI-aligning computations. @



Algorithmic reasoning

e GNN over state representations aligns with VI, but may put pressure on the planner
o Same gradients used to construct correct graphs and make VI computations

e To alleviate this issue, we choose to pre-train the GNN to perform value iteration-style
computations (over many synthetic MDPs), then deploying it within our planner

e This exploits, once again, the concept of algorithmic alignment (Xu et al,, ICLR'20)

O



Putting it all together!

—> Encoder Vi
~~~~> Transition T /
=== Kxecutor \

—>  Tail

ﬂl
/I\

Construct latent graph using 7' Execute (latent) Value Iteration using X

XLVIN (Deac et al., NeurlPS'20 DeepRL) @



XLVIN Components

Encoder (z: S — R*) provides state representations

Transition (T: R“ x A — R*) simulates effects of actions in latent space
o Pre-trained & Fine-tuned on the TransE loss (observed trajectories)

Executor (X: B¢ x R4k — R¥) simulates a planning algorithm (Value Iteration) in latent
space
o Pre-trained to execute VI on synthetic MDPs of interest, then frozen

Policy / Value Head, computing action probabilities and state-values given embeddings

o Use PPO as the policy gradient method
The entire procedure is end-to-end differentiable, does not impose any assumptions on the structure
of the underlying MDP, and has the capacity to perform computations directly aligned with value
iteration. Hence our model can be considered as a generalisation of VIN-like methods to settings @
where the MDP is not provided or otherwise difficult to obtain.



Results on low-data envs.

Freeway Alien Enduro
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Table 1: Mean scores for low-data CartPole-v0, Acrobot-v1, MountainCar-v0 and LunarLander-v2,
averaged over 100 episodes and five seeds.

CartPole-v0 Acrobot-vl MountainCar-v0 LunarLander-v2
Agent 10 trajectories 100 trajectories 100 trajectories 250 trajectories
PPO 104.6 +485 -500.0 +o00 -200.0 +o0.0 90.52 +9.54
ATreeC 117.1 +5s62 -500.0 +o00 -200.0 +o0.0 84.04 +535

XLVIN-R 199.2 116 -353.1 +1203 -185.6 +8.1 99.34 1677
XLVIN-CP 195.2 +50 -245.4 + 484 -168.9 +247 N/A




...why did it work?

e Recall, our executor network was pre-trained and frozen

e The pixel-level encoder needed to learn to map rich inputs into the executor’s latent space
o Analogous to a human who tries to map real-world problems to algorithmic inputs!

e \We set out to investigate to what extent it succeeded.

O



Grid-world qualitative study

e We evaluate the quality of the embeddings before and after applying the executor, in a
grid-world environment
o Here we can compute optimal V*(s)
o Evaluate linear decodability by linear regression!

1.0
e Results verify our hypothesis!

o Input values are already predictive
o But the executor consistently

o
©

o
oo

refines them!

R? for predicting V' * (s)
o
o

e Our encoder learnt to correctly map

o
(o))

the input to the latent algorithm! :) ' -
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Overview, revisited

Our aim is was to address three key questions: (roughly ~10min for each)

e Why should we, as deep learning practitioners, study algorithms?
o Further, why might it be beneficial to make ‘algorithm-inspired’ neural networks?

e How to build neural networks that behave algorithmically?
o And why am | even telling you this in a “Graph Machine Learning” context?

e Do algorithmic neural networks actually work when deployed?
o If so, how are they actually being used?

Hopefully, also some ideas on where you might be able to apply the ideas above :)

O



Further insight: Algorithmic reasoning

If you would like to know more details about constructing good processor networks:

DeepMind DeepMind

Graph Representation Learning Algorithmic Inductive Biases

for Algorithmic Reasoning

Petar Velickovi¢ Petar Velickovi¢

DLAG@WWW2020 DLG-KDD20
21 April 2020 24 August 2020

https://drive.google.com/file/d/1 EQ9Yu7VEkvr
HaVH1 WbTS5ABvxrSNY-s/view?usp=sharing ‘f.’

https://www.yvoutube.com/watch?v=IPQ6CPoluok



https://www.youtube.com/watch?v=IPQ6CPoluok
https://drive.google.com/file/d/1_EQ9Yu7VEkvrHaVHl_WbT5ABvxrSNY-s/view?usp=sharing
https://drive.google.com/file/d/1_EQ9Yu7VEkvrHaVHl_WbT5ABvxrSNY-s/view?usp=sharing

Further insight: Algorithmic implicit planning

If you would like to know more details about implicit planning and XLVIN:

DeepMind

A Tale of Three Implicit Planners

and the XLVIN Agent

Petar Velickovic¢
DeepMind/ELLIS CSML Seminar Series

University College London
12 March 2021

https://www.yvoutube.com/watch?v=mGw9ewL8wCU
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Further insight: graph representation learning

If GNNs are new(ish) to you, | recently gave a useful talk on theoretical GNN foundations:
https://www.youtube.com/watch?v=uF53xsT7mjc

DeepMind

Theoretical Foundations

of Graph Neural Networks

Petar Velickovi¢

CST Wednesday Seminar
17 February 2021

O
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Want to know more?

Combinatorial optimization and reasoning

with graph neural networks

Quentin Cappart’, Didier Chételat?, Elias Khalil®>, Andrea Lodi?,

Christopher Morris?, and Petar Velickovi¢*

'Department of Computer Engineering and Software Engineering, Polytechnique Montréal

2CERC in Data Science for Real-Time Decision-Making, Polytechnique Montréal
3Department of Mechanical & Industrial Engineering, University of Toronto
‘DeepMind

Combinatorial optimization is a well-established area in operations research and
computer science. Until recently, its methods have focused on solving problem
instances in isolation, ignoring the fact that they often stem from related data
distributions in practice. However, recent years have seen a surge of interest in
using machine learning, especially graph neural networks (GNNs), as a key building
block for combinatorial tasks, either as solvers or as helper functions. GNNs are
an inductive bias that effectively encodes combinatorial and relational input due
to their permutation-invariance and sparsity awareness. This paper presents a
conceptual review of recent key advancements in this emerging field, aiming at
both the optimization and machine learning researcher.

Our 43-page survey on GNNs for CO!

https://arxiv.org/abs/2102.09544

Section 3.3. details algorithmic reasoning,
with comprehensive references.

O
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DeepMind

Thank you!

petarv@google.com | https://petar-v.com

In collaboration with Charles Blundell, Raia Hadsell, Rex Ying, Matilde Padovano,

Andreea Deac, Ognjen Milinkovi¢, Pierre-Luc Bacon, Jian Tang, Mladen Nikoli¢,

Christopher Morris, Quentin Cappart, Elias Khalil, Didier Chétalat, Andrea Lodi,
Lovro Vr&ek, Mile Siki¢, Lars Buesing, Matt Overlan, Razvan Pascanu and Oriol Vinyals
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