
Neural Algorithmic Reasoning

Petar Veličković

DLG-KDD’21
15 August 2021

In this talk:
(Classical) Algorithms

In this talk:
(Classical) Algorithms

Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.

In this talk:
(Classical) Algorithms

(with a bit of neural spice)

Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.

Overview

Our aim is to address three key questions: (roughly ~10min for each)

● Why should we, as deep learning practitioners, study algorithms?
○ Further, why might it be beneficial to make ‘algorithm-inspired’ neural networks?

● How to build neural networks that behave algorithmically?
○ And why am I even telling you this in a “Graph Machine Learning” context?

● Do algorithmic neural networks actually work when deployed?
○ If so, how are they actually being used?

Hopefully, also some ideas on where you might be able to apply the ideas above :)

1 Motivation for
studying
algorithms

Why algorithms?

● Essential “pure” forms of combinatorial reasoning
○ ‘Timeless’ principles that will remain regardless of the model of computation
○ Completely decoupled from any form of perception*

 *though perception itself may also be expressed in the language of algorithms

Why algorithms?

● Essential “pure” forms of combinatorial reasoning
○ ‘Timeless’ principles that will remain regardless of the model of computation
○ Completely decoupled from any form of perception*

● Favourable properties
○ Trivial strong generalisation
○ Compositionality via subroutines
○ Provable correctness and performance guarantees
○ Interpretable operations / pseudocode

Why algorithms?

● Essential “pure” forms of combinatorial reasoning
○ ‘Timeless’ principles that will remain regardless of the model of computation
○ Completely decoupled from any form of perception*

● Favourable properties
○ Trivial strong generalisation
○ Compositionality via subroutines
○ Provable correctness and performance guarantees
○ Interpretable operations / pseudocode

● Hits close to home
○ Algorithms and competitive programming are how I got into Computer Science

2 Maximum flow
and the
Ford-Fulkerson
algorithm

Maximum flow problem

● Flow network: graph G = (V, E), augmented with a capacity function, c: V x V → ℝ+

○ Capacity cuv denotes how much flow is allowed on (u, v) edge

● Two special nodes: source, s, and sink, t
○ Source unleashes “infinite” capacity, sink receives “infinite” capacity

● A flow in G is any mapping f: V x V → ℝ+, such that:

● The value of a flow is the total flow emanating from the source:
○ We are interested in maximising it!

Max-flow example (f = 17)

Ford-Fulkerson’s Algorithm

● Such a rigorously defined problem often admits remarkably elegant and provably correct
algorithm blueprint!

● Many specific ways to find p yield different algorithms (e.g. Edmonds-Karp, Dinitz, etc…)
○ This can be proven to terminate with correct solution

*representing the capacities that remain after applying f

Ford-Fulkerson in action

Ford-Fulkerson in action

Ford-Fulkerson in action

Ford-Fulkerson in action

Ford-Fulkerson in action

(the flow may also be returned!)

Final solution!

Max-flow Min-cut theorem

Observing data in this way, also yields easy observation of connections, hence theorems!

3 “Fundamentals
of a method for
evaluating rail
net capacities”

(Harris & Ross, 1955)

The core problem

● Classical algorithms are designed with abstraction in mind, enforcing their inputs to
conform to stringent preconditions.
○ Keeping the inputs constrained enables an uninterrupted focus on “reasoning”
○ Easily certify the resulting procedure’s correctness, i.e., stringent postconditions

● However, we must never forget why we design algorithms!

● Unfortunately, this is at timeless odds with the way they are designed
○ Let’s study an example from the 1950s.

Original interest in flows

https://apps.dtic.mil/dtic/tr/fulltext/u2/093458.pdf

https://apps.dtic.mil/dtic/tr/fulltext/u2/093458.pdf

The Warsaw Pact railway network

Find “the bottleneck”, i.e.
the minimum cut.

As we know, this is directly
related to computing the
maximum flow.

(this was intuitively assumed by
Harris & Ross as well)

The core problem, as seen in 1955

An important issue for the community

● The “core problem” plagues applications of classical combinatorial algorithms to this day!

● Satisfying their preconditions necessitates converting inputs into an abstractified form

● If done manually, this often implies drastic information loss
○ Combinatorial problem no longer accurately portrays the dynamics of the real world.
○ Algorithm will give a perfect solution, but in a useless environment

● The data we need to apply the algorithm may be only partially observable
○ This can often render the algorithm completely inapplicable.

● An issue of high interest for both combinatorial and operations research communities.

4 Towards a
neurally spiced
solution

Abstractifying the core problem

● Assume we have real-world inputs, but our algorithm only admits abstract inputs
○ For now, we assumed manually converting from one input to another

Abstractifying the core problem

● Assume we have real-world inputs, but our algorithm only admits abstract inputs
○ For now, we assumed manually converting from one input to another

● Whenever we have manual feature engineering of raw data, neural nets are attractive!

Attacking the core problem

● First point of attack: “good old deep learning”
○ Replace human feature extractor with neural network
○ Still apply the same combinatorial algorithm

● First issue: algorithms typically perform discrete optimisation
○ This does not play nicely with gradient-based optimisation that neural nets require.

Backpropagating through classical algorithms

Vlastelica et al. (ICLR’20) provide a great approach for differentiating CO solver outputs

Black-box backprop

Algorithmic bottleneck

● Second (more fundamental) issue: data efficiency
○ Real-world data is often incredibly rich
○ We still have to compress it down to scalar values

● The algorithmic solver:
○ Commits to using this scalar
○ Assumes it is perfect!

● If there are insufficient training data to properly estimate the scalars, we hit same issues!
○ Algorithm will give a perfect solution, but in a suboptimal environment

Breaking the bottleneck

● Neural networks derive great flexibility from their latent representations
○ They are inherently high-dimensional
○ If any component is poorly predicted, others can step in and compensate!

● To break the bottleneck, we replace the algorithm with a neural network!

(The setting naturally aligns with encode-process-decode (Hamrick et al., CSS’18))

Encoder Decoder

P

● Assuming our latent-state NN aligns with the steps of an algorithm, we now have:
○ An end-to-end neural pipeline which is fully differentiable
○ No scalar-based bottlenecks, hence higher data efficiency.

● How do we obtain latent-state neural networks that align with algorithms?

Properties of this construction

Encoder Decoder

P

5 Algorithmic
reasoning

● The desiderata for our processor network P are slightly different than usual:
○ They are required to imitate the steps of the algorithm faithfully
○ This means they must extrapolate!
○ (Related: how to best decide the weights of P to robustly match the algorithm?)

● Neural networks typically struggle in the extrapolation regime!

● Algorithmic reasoning is an emerging area that seeks to ameliorate this issue
○ Primarily through theoretical and empirical prescriptions
○ These guide the neural architectures, inductive biases and featurisations that are

useful for extrapolating combinatorially

● This is a very active research area, with many key papers published only last year!

Algorithmic reasoning

tl;dr of algorithmic reasoning

● Graph neural networks (GNNs) align well with dynamic programming (Xu et al., ICLR’20)

● Interesting inductive biases explored by Veličković et al. (ICLR’20):
○ Encode-process-decode from abstract inputs to outputs
○ Favour the max aggregation
○ Strong supervision on trajectories

● Further interesting work:
○ IterGNNs (Tang et al., NeurIPS’20)
○ Shuffle-exchange nets (Freivalds et al., NeurIPS’19)
○ PGN (Veličković et al., NeurIPS’20)
○ PMP (Strathmann et al., ICLR’21 SimDL)

● Latest insights: linear algorithmic alignment is highly beneficial (Xu et al., ICLR’21)

Blueprint of algorithmic reasoning

Blueprint of algorithmic reasoning, in-depth

6 An algorithmic
implicit planner

Reinforcement learning (RL) setting

Reinforcement learning (RL) setting (with planning)

Reinforcement learning (RL) setting (variables)

reward, r ; state, s’

state, s

action, a

transitions, P(s’ | s, a)

rewards, R(s, a)

policy, π(a | s)

Reinforcement learning (RL) setting

reward, r ; state, s’

state, s

action, a

transitions, P(s’ | s, a)

rewards, R(s, a)

policy, π(a | s)

Want to optimise:

Discounted
cumulative reward

G = ∑t≥0 𝛾t rt

Intro to value iteration

● Value Iteration: dynamic programming algorithm for perfectly solving an RL environment

where v(s) corresponds to the value of state s.

● Guaranteed to converge to optimal solution (fixed-point of Bellman optimality equation)!

Optimal policy takes actions that maximise expected value: argmaxa ∑s’ V*(s’) P(s’ | s, a)

● BUT requires full knowledge of underlying MDP (P / R)
○ Prime target for our previously studied blueprint :)

Algorithmic reasoning over Value Iteration

● How would a human feature engineer make VI applicable?
○ Looking back to our blueprint example…

● As before, we will try to automate away the manual feature extraction

Latent-space transition models

● Assume we have encoded our state (e.g. with a NN) into embeddings, z(s) ∈ ℝk

● To expand a “local MDP” we can apply VI over, we can then use a transition model, T
○ It is then of the form T : ℝk x A → ℝk

○ Optimised such that T(z(s), a) ≈ z(s’)

● Many popular methods exist for learning T in the context of self-supervised learning

● Contrastive learning methods try to discriminate (s, a, s’) from negative pairs (s, a, s~)

Using a transition model to expand

We can use a learned transition
model on every action, to be
exhaustive (~breadth-first search)

Doesn’t scale with large action
spaces / thinking times; O(|A|K)

Can find more interesting rollout
policies, e.g. by distilling
well-performing model-free ones.

TreeQN / ATreeC

● Assume that we have reward/value models, giving us scalar values in every expanded node

● We can now directly apply a VI-style update rule!

● Can then use the computed Q-values directly to decide the policy

● Exactly as leveraged by models like TreeQN / ATreeC (Farquhar et al., ICLR’18)
○ Also related: Value Prediction Networks (Oh et al., NeurIPS’17)

TreeQN / ATreeC in action

● It’s good to take a recap and realise what we have done so far
○ We mapped our natural inputs (e.g. pixels) to the space of abstract inputs
○ (local MDP + reward values in every node)
○ This allowed us to execute VI-style algorithms directly on the abstract inputs

High-level view

High-level view

● It’s good to take a recap and realise what we have done so far
○ We mapped our natural inputs (e.g. pixels) to the space of abstract inputs
○ (local MDP + reward values in every node)
○ This allowed us to execute VI-style algorithms directly on the abstract inputs

● The VI update is differentiable, and hence so is our entire implicit planner.

● We hit bottleneck-based data efficiency issues again!
○ If there are insufficient training data to properly estimate the scalars…
○ Algorithm will give a perfect solution, but in a suboptimal environment

● To break the bottleneck, we replace the VI update with a neural network!

● As before, we can use graph neural networks to perform VI-aligning computations.

Breaking the bottleneck

Algorithmic reasoning

● GNN over state representations aligns with VI, but may put pressure on the planner
○ Same gradients used to construct correct graphs and make VI computations

● To alleviate this issue, we choose to pre-train the GNN to perform value iteration-style
computations (over many synthetic MDPs), then deploying it within our planner

● This exploits, once again, the concept of algorithmic alignment (Xu et al., ICLR’20)

Putting it all together!

XLVIN (Deac et al., NeurIPS’20 DeepRL)

XLVIN Components

● Encoder (z: S → ℝk) provides state representations

● Transition (T: ℝk x A → ℝk) simulates effects of actions in latent space
○ Pre-trained & Fine-tuned on the TransE loss (observed trajectories)

● Executor (X: ℝk x ℝ|A| x k → ℝk) simulates a planning algorithm (Value Iteration) in latent
space
○ Pre-trained to execute VI on synthetic MDPs of interest, then frozen

● Policy / Value Head, computing action probabilities and state-values given embeddings
○ Use PPO as the policy gradient method

● The soft executor enables VIN-like models (Tamar et al., NIPS’16) on general MDPs

Results on low-data envs.

...why did it work?

● Recall, our executor network was pre-trained and frozen

● The pixel-level encoder needed to learn to map rich inputs into the executor’s latent space
○ Analogous to a human who tries to map real-world problems to algorithmic inputs!

● We set out to investigate to what extent it succeeded.

Grid-world qualitative study

● We evaluate the quality of the embeddings before and after applying the executor, in a
grid-world environment
○ Here we can compute optimal V*(s)
○ Evaluate linear decodability by linear regression!

● Results verify our hypothesis!
○ Input values are already predictive
○ But the executor consistently

refines them!

● Our encoder learnt to correctly map

the input to the latent algorithm! :)

7 Summary and
conclusions

Overview, revisited

Our aim is was to address three key questions: (roughly ~10min for each)

● Why should we, as deep learning practitioners, study algorithms?
○ Further, why might it be beneficial to make ‘algorithm-inspired’ neural networks?

● How to build neural networks that behave algorithmically?
○ And why am I even telling you this in a “Graph Machine Learning” context?

● Do algorithmic neural networks actually work when deployed?
○ If so, how are they actually being used?

Hopefully, also some ideas on where you might be able to apply the ideas above :)

Further insight: Algorithmic reasoning

If you would like to know more details about constructing good processor networks:

https://www.youtube.com/watch?v=IPQ6CPoluok
https://drive.google.com/file/d/1_EQ9Yu7VEkvr

HaVHl_WbT5ABvxrSNY-s/view?usp=sharing

https://www.youtube.com/watch?v=IPQ6CPoluok
https://drive.google.com/file/d/1_EQ9Yu7VEkvrHaVHl_WbT5ABvxrSNY-s/view?usp=sharing
https://drive.google.com/file/d/1_EQ9Yu7VEkvrHaVHl_WbT5ABvxrSNY-s/view?usp=sharing

Further insight: Algorithmic implicit planning

If you would like to know more details about implicit planning and XLVIN:

https://www.youtube.com/watch?v=mGw9ewL8wCU

https://www.youtube.com/watch?v=mGw9ewL8wCU

Further insight: graph representation learning

If GNNs are new(ish) to you, I recently gave a useful talk on theoretical GNN foundations:
https://www.youtube.com/watch?v=uF53xsT7mjc

https://www.youtube.com/watch?v=uF53xsT7mjc

Want to know more?

Our 43-page survey on GNNs for CO!

https://arxiv.org/abs/2102.09544

Section 3.3. details algorithmic reasoning,
with comprehensive references.

https://arxiv.org/abs/2102.09544

Thank you!

petarv@google.com | https://petar-v.com

In collaboration with Charles Blundell, Raia Hadsell, Rex Ying, Matilde Padovano,
Andreea Deac, Ognjen Milinković, Pierre-Luc Bacon, Jian Tang, Mladen Nikolić,
Christopher Morris, Quentin Cappart, Elias Khalil, Didier Chétalat, Andrea Lodi,

Lovro Vrček, Mile Šikić, Lars Buesing, Matt Overlan, Razvan Pascanu and Oriol Vinyals

mailto:petarv@google.com
https://petar-v.com

