DeepMind

Neural Algorithmic Sketching

Petar Velickovic¢

SketchDL Workshop
CVPR 2021

19 June 2021

O

DeepMind

In this talk:
Sketching

B oS 2 PG G T
2 A@ODME[E S OC (D
DH @ DPE R & A&
=N LE Dl B et (o)

DeepMind

Also in this talk:
(Classical) Algorithms

O

MERGE-SORT (4, p, 1)

DeepMind 1 ifp<r
vEB(u) u|:| min|:| ma.xD 4 q=|(p+r)/2]
01 23 ... Yu-1 3 MERGE-SORT (A4, p,q)
summaryﬁ cluster| || [[[]]] b~ : 4 MERGE-SORT(A,q + 1,r)
' N 5 MERGE(A, p,q,r)
¢ YYYYYYYY &5{3 i B 334 &
vEB({/u) "0 i y, D © 4 ® @
W VEB(VE) trees PEE()) \P-FB(0)
. . RS
Also in this talk: B e
. o 3 @ o 1| 1ol 3]
(Classical) Algorithms .. .~ {5
5 D 1\2 T ; T 1
o 1N
8 7 7 B 0\1 ; ; ;\4 1
t 5 X

Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.

MERGE-SORT (4, p, 1)

DeepMind 1 ifp<r
vEB(u) u|:| min|:| ma.xD 2 q=|(p+r)/2]
01 23 ... Yu-1 3 MERGE-SORT (A4, p,q)
summaryﬁ cluster| | | | [][],]] 4 MERGE-SORT(A,q + 1,r)
i 5 MERGE(A4, p,q,r)
YYYYYYYY 0123 4 5 6
vEB({/u) i y, D © 4 ® @
{/u vEB(/u) trees
. . | R R
Also in this talk: B e
3@ o ! 1\24—2 13
(Classical) Algonthms c oS LR
; TN T T
(with a bit of neural spice) & N e IR
O 0o 1| 2| 2| 3| 3| 4
7 B N o TN T
0ol 1| 2| 2| 3| 4| 4
t 5 X

y Z
Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.

1

DeepMind

Sketches and
algorithms?

o

Sketches can be seen (roughly) analogous to graphs...

(a) original sketch (b) 1-hop connected

O

Visualising them requires a renderer! (algorithm :))

f(x)=y=.b5x+1
plotLine(x0, y0, x1, yl)

dx = x1 - x0
dy = yl - yo0 —~

D = 2*dy - dx S~ S X
AL N
for x from x0 to x1 \\1k:’
plOt(er) \.\
it D> O N
y=y+1 5 -
D = D - 2*%dx
end if

D = D + 2*dy

Rendering algorithms can be way more complex than this

»
: ‘

i v N
‘ : \M&_.‘

< ;
|
l

&=
=

o

The very process of sketching is often algorithmic

Hierarchical

Regular

Sequential

Sketching -> insight on generative factors!

Taken to the extreme, we could get...

o

Algorithms enable complex sketching from simple patterns

e |-systems allow for sketching complex, hierarchical shapes as rollouts of a CFG
o Very amenable to algorithmic computation, e.g. parsing

0.00 0.00 1 z
fil@y) =1 500 0.16] _y]
fog) — | 085 004 [w]) [o.oo]
004 085]|y 1.60
1020 —0267[z] [0.00]
@9 =10a3 022 ||yl | 160
015 0287[=2] [0.00]
fl@) =1 096 024]ly]| 044

O

Our aim for today

Capture the “algorithmic” aspect of sketching within a (graph) neural network

lllustrate neural algorithmic reasoning as one approach for doing so
o We'll use an algorithmic exposition for maximal rigour

Outline some tasks that could benefit from this
o Largely a perspectives talk!
o Potential useful “playground”

| should highlight I'm not active
in sketch research!

o Likely missing many rel. work
o Hope to give interesting ideas!

O

DeepMind

Motivation for
studying
algorithms

o

Why algorithms?

e Essential “pure” forms of combinatorial reasoning
o ‘Timeless’ principles that will remain regardless of the model of computation
o Completely decoupled from any form of perception*

*though perception itself may also be expressed in the language of algorithms

O

Why algorithms?

Essential “pure” forms of combinatorial reasoning

(@)

@)

‘Timeless’ principles that will remain regardless of the model of computation
Completely decoupled from any form of perception*

Favourable properties

(@)

(@)
(@)
(@)

Trivial strong generalisation

Compositionality via subroutines

Provable correctness and performance guarantees
Interpretable operations / pseudocode

O

Why algorithms?

e Essential “pure” forms of combinatorial reasoning
o ‘Timeless’ principles that will remain regardless of the model of computation
o Completely decoupled from any form of perception*

e Favourable properties
o Trivial strong generalisation
o Compositionality via subroutines
o Provable correctness and performance guarantees
o Interpretable operations / pseudocode

e Hits close to home
o Algorithms and competitive programming are how | got into Computer Science

O

DeepMind

“Fundamentals
of a method for
evaluating rail
net capacities”

(Harris & Ross, 1955) @

The core problem

e Classical algorithms are designed with abstraction in mind, enforcing their inputs to
conform to stringent preconditions.
o Keeping the inputs constrained enables an uninterrupted focus on “reasoning”
o Easily certify the resulting procedure’s correctness, i.e., stringent postconditions

e However, we must never forget why we design algorithms!

e Unfortunately, this is at timeless odds with the way they are designed
o Let's study an example from the 1950s.

O

Max-flow example (f=17)

Original interest in flows

SECRET

U. S AR TR

PROJECT RAND

RESEARCH MEMORANDUM

a o B

\

FUNDAMENTALS OF A METHOD FOR EVALUATING
RAIL NET CAPACITIES (U)

T. E. Harris

F. S. Ross
. sy
October 24. 1955 CODy ,NO- 3L)
CEFSEE, S e, G, S s S K SPMSSRME R TS S e
This matenal ¢ontains information atfcchng the notional defense of the Umted Siotes, witkin
the meaning of the vspronage laws, Title 18 U S.¢, Secs 793 and 794 the transmissivn or the

revelation of which 11 any manned 10 an unavibcrized peeson 1s prohibited by faw

SUMMARY

Afir power is an effective means of interdicting an enemy's
rall system, and such usage is a logical and important mission
for this Arm,

As in many military operations, hovever, the success of inter-
diction depends largely on how complete, accurate, and timely is
the commander's information, particularly concerning the effect of
his interdiction-program efforts on the enemy's cepability to move
men and supplies. This information should be avzilable at the

time the resulis are being achieved.

https://apps.dtic.mil/dtic/tr/fulltext/u2/093458.pdf

O

https://apps.dtic.mil/dtic/tr/fulltext/u2/093458.pdf

The Warsaw Pact railway network

Find “the bottleneck”, i.e.
the minimum cut.

As we saw, this is directly
related to computing the
maximum flow.

(this was intuitively assumed by
Harris & Ross as well)

The core problem, as seen in 1955

TI., THE RSTIMATING OF RAILWAY CAPACITIES

The evaluation of both railway system and individual track
capaciiies 18, tc a cenociderable extent; an art, The authors know
of no tested mathematical model or formla that includes all of the
varistions and imponderables that must be weighed.* Even when the
individual has been closely agsociated with the particular terri-
tory he 1s evaluabing, the final answer, however accurate, is

largely ong of judgment and experience,

O

An important issue for the community

e The “core problem” plagues applications of classical combinatorial algorithms to this day!
e Satisfying their preconditions necessitates converting inputs into an abstractified form

e If done manually, this often implies drastic information loss

o Combinatorial problem no longer accurately portrays the dynamics of the real world.

o Algorithm will give a perfect solution, but in a useless environment

e The data we need to apply the algorithm may be only partially observable
o This can often render the algorithm completely inapplicable.

O

DeepMind

Towards a

neurally spiced
solution

o

Abstractifying the core problem

e Assume we have real-world inputs, but our algorithm only admits abstract inputs

(@)

<

—E

O
O

_

]_

| ,%.
.359.

For now, we assumed manually converting from one input to another

~
+00
/ 7

O

Abstractifying the core problem

e Assume we have real-world inputs, but our algorithm only admits abstract inputs
o For now, we assumed manually converting from one input to another

\583/

A; 7 :Eﬁ]
o8]
iz a8

) —
~

gl'
' =
x > T —> Y
Natural inputs Abstract inputs Abstract outputs

e Whenever we have manual feature engineering of raw data, neural nets are attractive! b’

Attacking the core problem

e First point of attack: “good old deep learning”
o Replace human feature extractor with neural network
o Still apply the same combinatorial algorithm

x > T -> Y

Natural inputs Abstract inputs Abstract outputs

e Firstissue: algorithms typically perform discrete optimisation
o This does not play nicely with gradient-based optimisation that neural nets require. @
o Great solutions exist, however. See Vlastelica et al. (ICLR'20)

Algorithmic bottleneck

Second (more fundamental) issue: data efficiency
o Real-world data is often incredibly rich
o We still have to compress it down to scalar values

The algorithmic solver:
o Commits to using this scalar
o Assumes it is perfect!

e If there are insufficient training data to properly estimate the scalars, we hit same issues!
o Algorithm will give a perfect solution, but in a suboptimal environment

Possible context for sketching -- low-data extraction of key points from an image?

O

Breaking the bottleneck

e Neural networks derive great flexibility from their latent representations
o They are inherently high-dimensional
o If any component is poorly predicted, others can step in and compensate!

e To break the bottleneck, we replace the algorithm with a neural network!

—> U

X

) Encoder Decoder
Natural inputs Latent state Natural outputs

(The setting naturally aligns with encode-process-decode (Hamrick et al, CSS'18))

o

Properties of this construction

e Assuming our latent-state NN aligns with the steps of an algorithm, we now have:
o An end-to-end neural pipeline which is fully differentiable
o No scalar-based bottlenecks, hence higher data efficiency.

e How do we obtain latent-state neural networks that align with algorithms?

—> U

X

) Encoder Decoder
Natural inputs Latent state Natural outputs

O

4

DeepMind

Algorithmic
reasoning

o

Algorithmic reasoning

The desiderata for our processor network P are slightly different than usual:
o They are required to imitate the steps of the algorithm faithfully
o This means they must extrapolate!
o (Related: how to best decide the weights of P to robustly match the algorithm?)

Neural networks typically struggle in the extrapolation regime!

Algorithmic reasoning is an emerging area that seeks to ameliorate this issue
o Primarily through theoretical and empirical prescriptions
o These guide the neural architectures, inductive biases and featurisations that are
useful for extrapolating combinatorially

This is a very active research area, with many key papers published only last year!

O

tl;dr of algorithmic reasoning

e Graph neural networks (GNNs) align well with dynamic programming (Xu et al,, ICLR'20)

e Interesting inductive biases explored by Veli¢kovi¢ et al. (ICLR20):
o Encode-process-decode from abstract inputs to outputs
o Favour the max aggregation T'l’
o Strong supervision on trajectories

e Further interesting work: dy =
o IterGNNs (Tang et al, NeurlPS'20)
o Shuffle-exchange nets (Freivalds et al, NeurlPS'19)
o PGN (Velickovi¢ et al., NeurlPS'20) h
o PMP (Strathmann et al,, ICLR’21 SimDL)

e Latest insights: linear algorithmic alignment is highly beneficial (Xu et al,, ICLR'21) @

Blueprint of algorithmic reasoning

}

Abstract inputs Processor Abstract outputs
/i\
+Oo_/+oo
AN i g
i . ﬁ — A
+Oo———+00
9
7%
Natural inputs Natural outputs

“\Hz
o

&%;5
g8
2 g8

X

O

Blueprint of algorithmic reasoning, in-depth

W b Wl
@@@@0@99
T = >
© & © ¢ o @l @ @ O=@<®
Abstract inputs, X Tl“’ T']’ Tu,

D @%@ g”\> D @%@

O

Natural inputs, x Natural outputs, y

O

We showed this works in RL o*1(s) = maxs Q| Y Jp s, afo® (s’)I .

hf)—i—l - Ut t mf}-}-l mf}+l - Z Mt(ht ht e

v v Tlays|Cv
wEN (v)

—> Encoder 14
~~~~> Transition T \ /
=== KExecutor

—>  Tail

ll
/I\

Construct latent graph using 7’ Execute (latent) Value Iteration using X

XLVIN (Deac et al., NeurlPS'20 DeepRL) @



Further insight: Algorithmic reasoning

If you would like to know more details about constructing good processor networks:

DeepMind DeepMind

Graph Representation Learning Algorithmic Inductive Biases

for Algorithmic Reasoning

Petar Velickovi¢ Petar Velickovi¢

DLAG@WWW2020 DLG-KDD20
21 April 2020 24 August 2020

https://drive.google.com/file/d/1 EQ9Yu7VEkvr
HaVH1 WbTS5ABvxrSNY-s/view?usp=sharing ‘f.’

https://www.yvoutube.com/watch?v=IPQ6CPoluok



https://www.youtube.com/watch?v=IPQ6CPoluok
https://drive.google.com/file/d/1_EQ9Yu7VEkvrHaVHl_WbT5ABvxrSNY-s/view?usp=sharing
https://drive.google.com/file/d/1_EQ9Yu7VEkvrHaVHl_WbT5ABvxrSNY-s/view?usp=sharing

Further insight: graph representation learning

If GNNs are new(ish) to you, | recently gave a useful talk on theoretical GNN foundations:
https://www.youtube.com/watch?v=uF53xsT7mjc

DeepMind

Theoretical Foundations

of Graph Neural Networks

Petar Velickovi¢

CST Wednesday Seminar
17 February 2021

O


https://www.youtube.com/watch?v=uF53xsT7mjc

Want to know more?

Neural Algorithmic Reasoning

Petar Velickovié and Charles Blundell
DeepMind

Abstract

Algorithms have been fundamental to recent global technological advances
and, in particular, they have been the cornerstone of technical advances
in one field rapidly being applied to another. We argue that algorithms
possess fundamentally different qualities to deep learning methods, and
this strongly suggests that, were deep learning methods better able to
mimic algorithms, generalisation of the sort seen with algorithms would
become possible with deep learning—something far out of the reach of
current machine learning methods. Furthermore, by representing elements
in a continuous space of learnt algorithms, neural networks are able to
adapt known algorithms more closely to real-world problems, potentially
finding more efficient and pragmatic solutions than those proposed by
human computer scientists.

Here we present neural algorithmic reasoning—the art of building neu-
ral networks that are able to execute algorithmic computation—and pro-
vide our opinion on its transformative potential for running classical al-
gorithms on inputs previously considered inaccessible to them.

Our 7-page Opinion paper!

https://arxiv.org/abs/2105.02761

O


https://arxiv.org/abs/2105.02761

DeepMind

Implications of
algorithmic
sketching?

o



Blueprint of algorithmic reasoning

}

Abstract inputs Processor Abstract outputs
/i\
+Oo\_/+oo
AN i g
i . ﬁ — A
+Oo———+00
9
7%
Natural inputs Natural outputs

“\Hz
o

&%;5
g8
2 g8

X

O



Backpropagating through the drawing algorithm

Now our

“img2sketch” doesn't
have to re-learn how
to do brush strokes!

Can be taken to the
extreme with any
rendering algorithm.

P

Abstract inputs Processor Abstract outputs

f(x)=y=.5x+1
(x0, y0, x1, yl) — ——— ' '
y £(x,y)=x-2y+2

@ A(Z)
Natural inputs Natural outputs
e . 55 .- ,,; 7
e - 5 4’;_:,\ f g r’«{ : 5?

O



Backpropagating through the “sketcher”

Abstract inputs C Processor ) Abstract outputs
/ g
> =
We already know we
can train abstract

d
models of this kind T A(Z)
(e.g. SketchRNN)!

Natural inputs Natural outputs
e

“\Hz
Na})

O



Backpropagating through any parser

Extract the
“hierarchy”
within natural
images by
making them
pass through
a parser.

P

Abstract inputs § Processor > Abstract outputs
variables : X F

constants : + —[]

start : X f g A\{guf
rules : (X = F+{[XI-XI-FEFXEX), (F ~ FF) p—) ———
angle :25°

[+[1-1-[-1+

@ A(Z)
Natural inputs /

O



DeepMind

Thank you!

petarv@google.com | https://petar-v.com

In collaboration with Charles Blundell, Raia Hadsell, Rex Ying, Matilde Padovano,

Andreea Deac, Ognjen Milinkovi¢, Pierre-Luc Bacon, Jian Tang, Mladen Nikoli¢,

Christopher Morris, Quentin Cappart, Elias Khalil, Didier Chétalat, Andrea Lodi,
Lovro Vr&ek, Mile Siki¢, Lars Buesing, Matt Overlan, Razvan Pascanu and Oriol Vinyals

O


mailto:petarv@google.com
https://petar-v.com

