
Neural Algorithmic Sketching

Petar Veličković

SketchDL Workshop
CVPR 2021

19 June 2021



In this talk:
Sketching



Also in this talk:
(Classical) Algorithms



Also in this talk:
(Classical) Algorithms

Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.



Also in this talk:
(Classical) Algorithms

(with a bit of neural spice)

Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.



1 Sketches and 
algorithms?



Sketches can be seen (roughly) analogous to graphs...



Visualising them requires a renderer! (algorithm :) )



Rendering algorithms can be way more complex than this



The very process of sketching is often algorithmic

● Hierarchical

● Regular

 

● Sequential

 

● Sketching -> insight on generative factors!

 

● Taken to the extreme, we could get...



Algorithms enable complex sketching from simple patterns

● L-systems allow for sketching complex, hierarchical shapes as rollouts of a CFG
○ Very amenable to algorithmic computation, e.g. parsing

 



Our aim for today

● Capture the “algorithmic” aspect of sketching within a (graph) neural network

 

● Illustrate neural algorithmic reasoning as one approach for doing so
○ We’ll use an algorithmic exposition for maximal rigour

 

● Outline some tasks that could benefit from this
○ Largely a perspectives talk!
○ Potential useful “playground”

 

● I should highlight I’m not active 

in sketch research!

○ Likely missing many rel. work
○ Hope to give interesting ideas!



2 Motivation for 
studying 
algorithms



Why algorithms?

● Essential “pure” forms of combinatorial reasoning
○ ‘Timeless’ principles that will remain regardless of the model of computation
○ Completely decoupled from any form of perception*

 *though perception itself may also be expressed in the language of algorithms



Why algorithms?

● Essential “pure” forms of combinatorial reasoning
○ ‘Timeless’ principles that will remain regardless of the model of computation
○ Completely decoupled from any form of perception*

 

● Favourable properties
○ Trivial strong generalisation
○ Compositionality via subroutines
○ Provable correctness and performance guarantees
○ Interpretable operations / pseudocode



Why algorithms?

● Essential “pure” forms of combinatorial reasoning
○ ‘Timeless’ principles that will remain regardless of the model of computation
○ Completely decoupled from any form of perception*

 

● Favourable properties
○ Trivial strong generalisation
○ Compositionality via subroutines
○ Provable correctness and performance guarantees
○ Interpretable operations / pseudocode

 

● Hits close to home
○ Algorithms and competitive programming are how I got into Computer Science



2 “Fundamentals 
of a method for 
evaluating rail 
net capacities”

(Harris & Ross, 1955)



The core problem

● Classical algorithms are designed with abstraction in mind, enforcing their inputs to 
conform to stringent preconditions.
○ Keeping the inputs constrained enables an uninterrupted focus on “reasoning”
○ Easily certify the resulting procedure’s correctness, i.e., stringent postconditions

 

● However, we must never forget why we design algorithms!

 

● Unfortunately, this is at timeless odds with the way they are designed
○ Let’s study an example from the 1950s.



Max-flow example (f = 17)



Original interest in flows

https://apps.dtic.mil/dtic/tr/fulltext/u2/093458.pdf

https://apps.dtic.mil/dtic/tr/fulltext/u2/093458.pdf


The Warsaw Pact railway network

Find “the bottleneck”, i.e. 
the minimum cut.

As we saw, this is directly 
related to computing the 
maximum flow.

(this was intuitively assumed by 
Harris & Ross as well)



The core problem, as seen in 1955



An important issue for the community

● The “core problem” plagues applications of classical combinatorial algorithms to this day!

 

● Satisfying their preconditions necessitates converting inputs into an abstractified form

● If done manually, this often implies drastic information loss
○ Combinatorial problem no longer accurately portrays the dynamics of the real world.
○ Algorithm will give a perfect solution, but in a useless environment

 

● The data we need to apply the algorithm may be only partially observable
○ This can often render the algorithm completely inapplicable.



3 Towards a 
neurally spiced 
solution



Abstractifying the core problem

● Assume we have real-world inputs, but our algorithm only admits abstract inputs
○ For now, we assumed manually converting from one input to another



Abstractifying the core problem

● Assume we have real-world inputs, but our algorithm only admits abstract inputs
○ For now, we assumed manually converting from one input to another

● Whenever we have manual feature engineering of raw data, neural nets are attractive!



Attacking the core problem

● First point of attack: “good old deep learning” 
○ Replace human feature extractor with neural network
○ Still apply the same combinatorial algorithm

● First issue: algorithms typically perform discrete optimisation
○ This does not play nicely with gradient-based optimisation that neural nets require.
○ Great solutions exist, however. See Vlastelica et al. (ICLR’20)



Algorithmic bottleneck

● Second (more fundamental) issue: data efficiency
○ Real-world data is often incredibly rich
○ We still have to compress it down to scalar values

 

● The algorithmic solver: 
○ Commits to using this scalar
○ Assumes it is perfect!

 

● If there are insufficient training data to properly estimate the scalars, we hit same issues!
○ Algorithm will give a perfect solution, but in a suboptimal environment

 

● Possible context for sketching -- low-data extraction of key points from an image?



Breaking the bottleneck

● Neural networks derive great flexibility from their latent representations
○ They are inherently high-dimensional
○ If any component is poorly predicted, others can step in and compensate!

 

● To break the bottleneck, we replace the algorithm with a neural network!

(The setting naturally aligns with encode-process-decode (Hamrick et al., CSS’18))

Encoder Decoder

P



● Assuming our latent-state NN aligns with the steps of an algorithm, we now have:
○ An end-to-end neural pipeline which is fully differentiable
○ No scalar-based bottlenecks, hence higher data efficiency.

 

● How do we obtain latent-state neural networks that align with algorithms?

Properties of this construction

Encoder Decoder

P



4 Algorithmic 
reasoning



● The desiderata for our processor network P are slightly different than usual:
○ They are required to imitate the steps of the algorithm faithfully
○ This means they must extrapolate!
○ (Related: how to best decide the weights of P to robustly match the algorithm?)

 

● Neural networks typically struggle in the extrapolation regime!

 

● Algorithmic reasoning is an emerging area that seeks to ameliorate this issue
○ Primarily through theoretical and empirical prescriptions
○ These guide the neural architectures, inductive biases and featurisations that are 

useful for extrapolating combinatorially

 

● This is a very active research area, with many key papers published only last year!

Algorithmic reasoning



tl;dr of algorithmic reasoning

● Graph neural networks (GNNs) align well with dynamic programming (Xu et al., ICLR’20)

 

● Interesting inductive biases explored by Veličković et al. (ICLR’20):
○ Encode-process-decode from abstract inputs to outputs
○ Favour the max aggregation
○ Strong supervision on trajectories

 

● Further interesting work:
○ IterGNNs (Tang et al., NeurIPS’20)
○ Shuffle-exchange nets (Freivalds et al., NeurIPS’19)
○ PGN (Veličković et al., NeurIPS’20)
○ PMP (Strathmann et al., ICLR’21 SimDL)

 

● Latest insights: linear algorithmic alignment is highly beneficial (Xu et al., ICLR’21)



Blueprint of algorithmic reasoning



Blueprint of algorithmic reasoning, in-depth



We showed this works in RL

XLVIN (Deac et al., NeurIPS’20 DeepRL)



Further insight: Algorithmic reasoning

If you would like to know more details about constructing good processor networks:

https://www.youtube.com/watch?v=IPQ6CPoluok
https://drive.google.com/file/d/1_EQ9Yu7VEkvr

HaVHl_WbT5ABvxrSNY-s/view?usp=sharing

https://www.youtube.com/watch?v=IPQ6CPoluok
https://drive.google.com/file/d/1_EQ9Yu7VEkvrHaVHl_WbT5ABvxrSNY-s/view?usp=sharing
https://drive.google.com/file/d/1_EQ9Yu7VEkvrHaVHl_WbT5ABvxrSNY-s/view?usp=sharing


Further insight: graph representation learning

If GNNs are new(ish) to you, I recently gave a useful talk on theoretical GNN foundations: 
https://www.youtube.com/watch?v=uF53xsT7mjc

https://www.youtube.com/watch?v=uF53xsT7mjc


Want to know more?

Our 7-page Opinion paper!

https://arxiv.org/abs/2105.02761

https://arxiv.org/abs/2105.02761


5 Implications of 
algorithmic 
sketching?



Blueprint of algorithmic reasoning



Backpropagating through the drawing algorithm

Now our 
“img2sketch” doesn’t 
have to re-learn how 
to do brush strokes!

Can be taken to the 
extreme with any 
rendering algorithm.



Backpropagating through the “sketcher”

We already know we 
can train abstract 
models of this kind 
(e.g. SketchRNN)! 



Backpropagating through any parser 

Extract the 
“hierarchy” 
within natural 
images by 
making them 
pass through 
a parser.

[+[]-]-[-]+



Thank you!

petarv@google.com | https://petar-v.com

In collaboration with Charles Blundell, Raia Hadsell, Rex Ying, Matilde Padovano,
Andreea Deac, Ognjen Milinković, Pierre-Luc Bacon, Jian Tang, Mladen Nikolić,
Christopher Morris, Quentin Cappart, Elias Khalil, Didier Chétalat, Andrea Lodi,

Lovro Vrček, Mile Šikić, Lars Buesing, Matt Overlan, Razvan Pascanu and Oriol Vinyals

mailto:petarv@google.com
https://petar-v.com

