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A very hot research topic
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Rich ecosystem of libraries
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Rich ecosystem of datasets

OGB o Pygecgnl;g;rtg /* TUDataset

ogb.stanford. edu graphlearning.io

https://pytorch-geometric. readthedocs.
io/en/latest/modules/datasets.html

Benchmarking Graph Neural Networks

github.com/graphdeeplearning/benchmarking-gnns
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Fantastic GNNs
in the Wild

(Compressed & updated talk from EEML 2020)
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Impactful applications in science and industry
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Impactful applications in science and industry

Cell

A Deep Learning Approach to Antibiotic Discovery

Graphical Abstract Authors
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Impactful applications in science and industry
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Impactful applications in science and industry
nature
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Article | Published: 09 June 2021
A graph placement methodology for fast chip design

'% ‘_ '% Azalia Mirhoseini &, Anna Goldie &, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
® . L @ Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa,

William Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter & Jeff Dean

& GOOGLE TECH ARTIFICIAL INTELLIGENCE

Google is using Al to design its next generation of
Al chips more quickly than humans can

Designs that take humans months can be matched or beaten by Al in six hours

", ! By James Vincent | Jun 10, 2021, 9:13am EDT

Chip design (TPUv5)




Impactful applications from DeepMind
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Impactful applications from DeepMind
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Impactful applications from DeepMind

Solving Mixed Integer Programs Using Neural
Networks

Vinod Nair*™!, Sergey Bartunov*!, Felix Gimeno*!, Ingrid von Glehn*!, Pawel Lichocki*?, Ivan
Lobov*!, Brendan O’Donoghue*!, Nicolas Sonnerat*!, Christian Tjandraatmadja*?, Pengming
Wang*!, Ravichandra Addanki!, Tharindi Hapuarachchi', Thomas Keck', James Keeling?,

Pushmeet Kohli!, Ira Ktena!, Yujia Li!, Oriol Vinyals!, Yori Zwols!
DeepMind, 2Google Research
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Combinatorial optimisation



Impactful applications from DeepMind

ETA Prediction with Graph Neural Networks in Google Maps

Austin Derrow-Pinion!, Jennifer She!, David Wong?*, Oliver Lange?, Todd Hester**, Luis Perez>*,
Marc Nunkesser?, Seongjae Lee?, Xueying Guo®, Brett Wiltshire!, Peter W. Battaglia!, Vishal

Guptal, Ang Li', Zhongwen Xu®*, Alvaro Sanchez-Gonzalez!, Yujia Li' and Petar Veli¢kovié¢!
DeepMind ?Waymo 3Google “Amazon >Facebook AI °Sea AlLab *work done while at DeepMind
{derrowap,jenshe,wongda,petarvi@google.com

VB The Machine  GamesBeat Jobs  Special Issue BecomeaMember | S

The Machine Q

Making sense of Al

DeepMind claims its Al improved Google Maps
travel time estimates by up to 50%

Kyle Wiggers @Kyle_L_Wiggers September 3, 2020 7:00 AM

Travel-time Prediction in Google Maps
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What will we cover today?

e Hopefully I've given you a convincing argument for why GNNs are useful to study
o For more details and applications, please see e.g. my EEML 2020 talk

e My aims for today: empower you to make immediate contributions to GRL

e Derive GNNs from first principles (permutation invariance and equivariance)
o  Similar in spirit to my previous talk at Cambridge

e Categorise existing GNNs into three spatial “flavours”

e Present interesting open problems at the “bleeding edge”

O



Where do we begin?

e We will first look at graphs without connections (sets)
o Much simpler to analyse
o Most conclusions will naturally carry over to graphs
o  Still very relevant! (point clouds / LiDAR)
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Permutation
invariance and
equivariance
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Learning on sets: Setup

For now, assume the graph has no edges (e.g. set of nodes, V).
Let x. € R* be the features of node i.

We can stack them into a node feature matrix of shape n x k:
_ T
X - (Xl 7 e o o ’ Xn) ‘

That is, the ith row of X corresponds to x.

Note that, by doing so, we have specified a node ordering!

o  We would like the result of any neural networks to not depend on this.

O



What do we want?
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What do we want?

X5
X4

X3

X9

O



nt?
t do we wa
Wha

X5
f X4

X3

X9

X9

X5

X4

X3

O



Permutations and permutation matrices

e It will be useful to think about the operations that change the node order
o Such operations are known as permutations (there are n! of them)
o e.g. apermutation (24,1, 3) meansy, « X, ¥, < X, Y, < X, Y, — X,.

e To stay within linear algebra, each permutation defines an n x n matrix
o Such matrices are called permutation matrices
o They have exactly one 1in every row and column, and zeros everywhere else
o Their effect when left-multiplied is to permute the rows of X, like so:

0100 —_— X1 — —_— X9 —

oo o1 || — x —| | — x¢ —
PesrnX =11 ¢ ¢ o — oy — | | — = —
001 0] [— x4 — | — X3 — |

O



Permutation invariance

e We want to design functions f(X) over sets that will not depend on the order

e Equivalently, applying a permutation matrix shouldn't modify the result!

e We arrive at a useful notion of permutation invariance. We say that f(X) is permutation
invariant if, for all permutation matrices P:

f(PX) = f(X)

e One very generic form is the Deep Sets model (Zaheer et al, NeurlPS'17): f(X (Z W ( xz)>
where v and ¢ are (learnable) functions, e.g. MLPs.

o The sum aggregation is critical' (other choices possible, e.g. max or avg)

O



Permutation equivariance

e Permutation-invariant models are a good way to obtain set-level outputs

e What if we would like answers at the node level?
o  We want to still be able to identify node outputs, which a permutation-invariant
aggregator would destroy!

e We may instead seek functions that don't change the node order
o le.if we permute the nodes, it doesn't matter if we do it before or after the function!

e Accordingly, we say that f(X) is permutation equivariant if, for all permutation matrices P:

f(PX) = Pf(X)

O



Important constraint: Locality

e Want signal to be stable under slight deformations of the domain

e Highly beneficial to compose local

operations to model larger-scale ones

o local ops won't globally propagate errors
o e.g. CNNs with 3 x 3 kernels, but very deep

e Accordingly, we would like to support locality in our layers!

e cf. Fourier Transform vs. Wavelets

distortion

ALy — L — ,

AU A A —\/\Db/\’— What does this mean for sets?

NN NG N4 q
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General blueprint for learning on sets

e Equivariance mandates that each node’s row is unchanged by f. That is, we can think of
equivariant set functions as transforming each node input x. into a latent vector h:

where vy is any function, applied in isolation to every node. Stacking h. yields H = f(X).

X1
X9
X3
X4

X5

(remark: this is typically as far as we can get with sets, without assuming or inferring additional structure)

,I:_
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General blueprint for learning on sets

e Equivariance mandates that each node’s row is unchanged by f. That is, we can think of
equivariant set functions as transforming each node input x. into a latent vector h:

h; =[v(x;)

where vy is any function, applied in isolation to every node. Stacking h. yields H = f(X).

e We arrive at a general blueprint: (stacking) equivariant function(s), potentially with an
invariant tail---yields (m)any useful functions on sets!

F(X) ={o | B (x:)

1S

Here, @Disa permutation-invariant aggregator (such as sum, avg or max).

(remark: this is typically as far as we can get with sets, without assuming or inferring additional structure)

O
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Learning on graphs

Now we augment the set of nodes with edges between them.
o Thatis, we consider general E S V x V.

e We canrepresent these edges with an adjacency matrix, A, such that:

1 (i,5) €€

Aij = .
0 otherwise

Further additions (e.g. edge features) are possible but ignored for simplicity.

Our main desiderata (permutation {in,equi}variance) still hold!

O
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Permutation invariance and equivariance on graphs

e The main difference: node permutations now also accordingly act on the edges

e We need to appropriately permute both rows and columns of A
o When applying a permutation matrix P, this amounts to PAPT

e We arrive at updated definitions of suitable functions f(X, A) over graphs:

Invariance: f(PX, PAPT) — f(X, A)
Equivariance: f(PX, PAPT) Pf(X, A)

o



Locality on graphs: neighbourhoods

e On sets, we enforced equivariance by applying functions to every node in isolation

e Graphs give us a broader context: a node’s neighbourhood
o For a node j, its (1-hop) neighbourhood is commonly defined as follows:

Ni=A{j:(,j) €€V (4,i) €&}

N.B. we do not explicitly consider directed edges, and often we assume i € N,

e Accordingly, we can extract the multiset of features in the neighbourhood
Xn, ={fx;: 5 e N}

and define a local function, g, as operating over this multiset: g(x, X.).

O



A recipe for graph neural networks

e Now we can construct permutation equivariant functions, f(X, A), by appropriately applying
the local function, g, over all neighbourhoods:

- g(X17XN1> T

. x2, Xpn,) —
(X A) = 9(x2, Xn)

- g(Xn, XNn) T

e To ensure equivariance, we need g to not depend on the order of the vertices in X,
o Hence, g should be permutation invariant!



A recipe for graph neural networks, visualised

XN, = {Xa)Xp, Xc, X4, Xe I} @



General blueprint for learning on graphs
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General blueprint for learning on graphs
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General blueprint for learning on graphs

Node classification

Z; — f(hi)

O



General blueprint for learning on graphs

Node classification

Z; — f(hi)

Graph classification

zg = f (Gaiev hi)

O



General blueprint for learning on graphs

Node classification

Z; — f(hi)

Graph classification

zg = f (GBiEV hi)

Link prediction
z;; = f(hi, hj, e;;)

O
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What’s in a GNN layer?

e As mentioned, we construct permutation-equivariant functions f(X, A) over graphs by
shared application of a local permutation-invariant g(xi, XNi).
o We often refer to f as “GNN layer”, g as “diffusion”, “propagation”, “message passing”

I

e Now we look at ways in which we can actually concretely define g.
o Very intense area of research!

e Fortunately, almost all proposed layers can be classified as one of three spatial “flavours”.

O



The three “flavours” of GNN layers

Xa Xa
Cha (jbl)
\Xb < Che Xe

/de/ \Cbe
X X, X4

Convolutional

h; = ¢ | xi, P cijv(x;)
JEN;

.......... Xa -
gébg\(:lﬁb
Xb ( .......... Ope XC
K . A
G,
------- > (pd <" age\
%) X,
Attentional
JEN;

> 1M < My
e
Message-passing

h,=¢ (Xi, P v(xi x))

JEN;

|
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Convolutional GNN

Features of neighbours aggregated with fixed weights, c;

Usually, the weights depend directly on A.
ChebyNet (Defferrard et al, NeurlPS"16)

(@)

@)

(@)

Useful for homophilous graphs and scaling up

(@)

h; = ¢ | xi, P cijib(x;)
JEN;

GCN (Kipf & Welling, ICLR'17)
SGC (Wu et al., ICML"19)

When edges encode label similarity

Xa
Cha (fbl)
\Xb < Cbe
N
bd Cbe
/ N
Xd Xe
Convolutional

O



Attentional GNN

e Features of neighbours aggregated with implicit weights (via attention)

b= 8 {0 ) o) X
JEN; \< N
Opg A
e Attention weight computed as Q; = a(x, xj) *\(} )
o MoNet (Monti et al, CVPR7) e Xp < ...A@bc
o  GAT (Velickovié et al, ICLR'18) 7 \ T
o GAT2 (Brodyetal,2021) . > Qg e N,

e Useful as “middle ground” w.r.t. capacity and scale Xd

o Edges need not encode homophily Attentional
o  But still compute scalar value in each edge

O



Message-passing GNN

e Compute arbitrary vectors (“messages”) to be sent across edges

hi = ¢ | xi, D ¥(xi, %) g,

JEN; 9

® Messages computed as m, = p(x, xj)
o Interaction Networks (Battaglia et al,, NeurlPS'16)
o  MPNN (Gilmer et al, ICML17)
o GraphNets (Battaglia et al, 2018)

e Most generic GNN layer Xd

o May have scalability or learnability issues
o Ideal for computational chemistry, reasoning and simulation

.
L

Message-passing

O
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Towards the bleeding edge

e Now | will present and state three areas full of open problems, which can be easily
expressed using the tools we've built up so far

e This can enable you to make immediate contributions to the area.

e If you've read up on graph machine learning before, there’s a good chance you will have
seen at least some of these.

e Happy to chat about these (or related) open problems at any point :)

O
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What to do when there is no graph?

e So far, we've assumed something (seemingly) very innocent: that the graph is given to us!

e In practice, the given graph may often be suboptimal for the task we're solving
o For various connectivity querying on graphs, maintaining the right set of edges can
make a difference between linear-time and (amortised) constant-time complexity!

e Taken to the extreme: what to do when there is no graph?
o Assume we're given a node feature matrix, but no adjacency
o We've seen one “solution” for this already...

O



Option 1: Assume no edges

Deep Sets (Zaheer et al,, NeurlPS'17)

No edges (set)

O



Option 2: Assume all edges

Ni=V

Let the GNN decide which edges matter!

Using conv-GNNs no longer makes sense.

If we use attentional GNNs we recover:

hi — ¢ X’i)@a(xhxj)w(xj)

JjEeV

Does this look familiar?

Interaction Nets (Battaglia et al., NeurlPS'16)
Relational Nets (Santoro et al., NeurlPS'17)

Transformers (Vaswani et al.,, NeurlPS'17)

Final CNN feature maps RN

e . Object pair
: : with question  J@-MLP

Element-wise
sum

All edges (fully-connected graph) @



A note on Transformers

Transformers are Graph Neural Networks!

e Fully-connected graph
e Attentional flavour

The sequential structural information is injected through
the positional embeddings. Dropping them yields a
fully-connected GAT model.

Attention can be seen as inferring soft adjacency.

See Joshi (The Gradient; 2020).

Multi-Head Attention
1

Linear

1

Concat
AA

Scaled Dot-Product n
Attention

pl i pl

Linear Linear P11 Linear

-

V K Q @



The “truth” likely lies in between

Empty graph ignores a potential wealth of information

e Full graph can be hard to scale (quadratic complexity, large neighbourhoods)

e Ideally, we want to infer the adjacency matrix A, then use it as edges for a GNN!

e Commonly termed “latent graph inference”.

e Choosing edges is a discrete decision -- inherently hard to backpropagate!

O



Option 3a: Infer edges to use (variational)

Neural Relational Inference (Kipf, Fetaya et al., ICML"18)

(Legend: I: Node emb. ['lH: Edge emb. —»:MLP fl..,: Concrete distribution ---»:Sampling)

e—v
e—v e

>
xﬂ

. J \.

BITTIT

Encoder Decoder

Specify prior over edges, use encoder to derive posterior, sample to infer graph (~VAE setup) b

O



k-NN graphs

The NRI approach above gives a way to reason about the graph structure probabilistically
o But it still requires running a fully-connected GNN!

Ideally, we want to infer a sparse graph without ever doing a dense GNN
o (atleast at inference time...)

The current workhorse of such approaches is the k-nearest neighbour (k-NN) graph
o Each node stores features h,
o Connect it only to its k nearest neighbours in h (e.g. based on Euclidean distance).

Open problem: Can we (should we) do better?

O



point cloud

Option 3b: Infer edges to use (no learning)

Dynamic Graph CNN (Wang et al., 2018)

cC n
i S
............................ - % | {1024} & il {512 265 C) ,‘_“, o
spatial | : EdgeConv : EdgeConv . EdgeConv EdgeConv Ll _’EB mip N P 5 E o 2
. transform | X[ mpgt T x| mpiear T i mipfea} T mip {128} 9, = =) = =
g : : o B 3 %
©5
categorical
vector
mip {64} c
: S I — : : : = s S
i EdgeConv _’ ] EdgeConv EdgeConv mip {1024} § repeating [ (256, 256, 128, p) g
) mipieseq | Cmebhsn —|x(~ mpes x| ~D— —|8|—O—— X~ || ¢
i § [ —— H 3 pooling - g)
w

Literally take k nearest neighbours to decide edges at every layer, without any new parameters @

output scores



Option 3c: Infer edges to use (reinforcement learning)

Differentiable Graph Module (Kazi et al., 2020)

-------------------------------------------------------------------------

II “ ) <
e e Pgcll =
X : 4 ‘00. .' ‘-_'. "-.,.'. / R * E

—> - Dij  _goili e 3 | Sampler L. Y I

; H —_H:"..,:’ ...... R ‘ n'L . ~..... ‘0 1 : %
...... 8:.) fo - . .".\‘ : “"’.‘."" E_') E,P

E '--q,:? ..................... ‘¢ P E

16 F J L J

: I ol T :

\ graph feature Probabilistic Graph Ersph SERBIn !

“._  learing Generator P e B

ok e e e e e e e e e e e e e e e e e R e e e e e e M M M e e e e M e e e e e e e e M M e e e e e e e e e e e e e e e e e e e e e e e e

Sample (probabilistically) a k-NN graph, optimise downstream performance as RL reward
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Option 3d: Infer edges to use (supervised learning)

Pointer Graph Networks (Velickovic et al., NeurlPS'20)

S

)

GNN

Eqns. 1-2
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(" )
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=

“ )

&

<

('a )

&

<

(" )

)

Self-Attn

Eqn. 3

Directly supervise the k-NN graph using ground-truth knowledge (e.g. data structure rollouts)

Eqns. 6-7

GNN

Eqns. 1-2

=

. )

&

=

.’.)

&

<

(.7 ) """""" >

&

<
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%

Decoder
Eqn. 3
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How powerful are Graph Neural Networks?

e GNNs are a powerful tool for processing real-world graph data
o But they won't solve any task specified on a graph accurately!

e Canonical example: deciding graph isomorphism
o Am | able to use my GNN to distinguish two non-isomorphic graphs? (hG1 z h
o If I can’t, any kind of task discriminating them is hopeless

e We will assess the power of GNNs by which graphs they are able to distinguish.

GZ)

O



Weisfeiler-Lehman Test

Simple but powerful way of distinguishing: pass random hashes of sums along the edges

Iterate until hashes don't change.
“Possibly isomorphic” if hash histograms are the same.

O
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Let’s run the WL Test!
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Let’s run the WL Test!

¢(o, {o,0}) $(o, o, 0D
¢(o, {0,0,0}) (o, {o,0,0})
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/
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Weisfeiler-Lehman Test

Connection to conv-GNNs spotted very early; e.g. by GCN (Kipf & Welling, ICLR"17)

[ ]

e Untrained GNNs can hence work very well!
o Untrained ~ random hash

e The test does fail at times, however:

Algorithm 1: WL-1 algorithm (Weisfeiler & Lehmann, 1968)
Input: Initial node coloring (h§°), hgo), o~ hg\(,)))

Output: Final node coloring (hgT), hgT), ey hg))
t<0;
repeat

for v; € V do

L R fhash () hg.t));

t+—t+1;
until stable node coloring is reached,

h; =|¢ | xi, P|eio(x;)| |

JEN;

O



GNNs are no more powerful than 1-WL

e Over discrete features, GNNs can only be as powerful as the 1-WL test described before!
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GNNs are no more powerful than 1-WL

e Over discrete features, GNNs can only be as powerful as the 1-WL test described before!

e One important condition for maximal power is an injective aggregator (e.g. sum)
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GNNs are no more powerful than 1-WL

e Over discrete features, GNNs can only be as powerful as the 1-WL test described before!

e One important condition for maximal power is an injective aggregator (e.g. sum)

¢ @ e & o >
v N @
Input sum - multiset mean - distribution max - set

e Graph isomorphism network (GIN; Xu et al,, ICLR'19) proposes a simple,
maximally-expressive GNN, following this principle:

(k) — (k) (k) ) . p(k—1) (k—1)
0 =3ip (140) BT )

O



@
Higher-order GNNs

e We can make GNNs stronger by analysing failure cases of 1-WL!
o \Very active area, with many open problems!
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O
Higher-order GNNs

e We can make GNNs stronger by analysing failure cases of 1-WL!

e For example, just like T-WL, GNNs cannot detect closed triangles
o This is because, from a GNN's perspective, all nodes look the samel!
o  Can you think of a simple fix?

input graph

what GNNs see
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@
Higher-order GNNs

e We can make GNNs stronger by analysing failure cases of 1-WL!

e For example, just like T-WL, GNNs cannot detect closed triangles
o Augment nodes with randomised features (Sato et al, SODM'21)
o Now a node can “see itself” k hops away!

input graph

input same
ayer colo

hat GNNs see
N -
5> >
[e] (o]
S

% 3100 @O @



@
Higher-order GNNs

e We can make GNNs stronger by analysing failure cases of 1-WL!

For example, just like 1-WL, GNNs cannot detect closed triangles
o Augment nodes with randomised/positional features (Sato et al, SDM'21)
m Explored by RP-GNN (Murphy et al, ICML19) and P-GNN (You et al, ICML"19)
o Can also literally count interesting subgraphs (Bouritsas et al, 2020)

Fixing “failure cases” of 1-WL yields many classes of higher-order GNNs

They can broadly be categorised into three groups:
o Modifying features (as above)
o Modifying the message passing rule; e.g. DGN (Beaini, Passaro et al. (2020))
o Modifying the graph structure; e.g. 1-2-3-GNNs (Morris et al, AAAI'9)

O



Going beyond discrete features

e What happens when features are continuous? (real-world apps / latent GNN states)
o ..the proof for injectivity of sum (hence GINs’ expressivity) falls apart

Node receiving the Message of neighbour

message no‘de #1
) 0 0 il
Graph 1:
2 2 e 2 4
Message of A 2 4 i
neighbour node #2
VS VS VS VS
4 2 4 0
Graph 2: 0 0 0 - 4 3 h
0
Simple aggregators that can Mean Mean Mean Mean
differentiate graph 1 and 2: Min Min Min Min

Aggregators that fail: Max Max Max Max G
STD STD STD STD



Which is best? Neither.

e There doesn’t seem to be a clear single “winner” aggregator here..

e In fact, we prove in the PNA paper that there isn’t one!

Theorem 1 (Number of aggregators needed). In order to discriminate between multisets of size n
whose underlying set is R, at least n aggregators are needed.

e The proof is (in my opinion) really cool! (relies on Borsuk-Ulam theorem)

e PNA proposes empirically powerful combination of aggregators for general-purpose GNNs:

I N
=| S(D,a=1) || 7
@ S(D,a=-1) max
N _ | min |
sczlgrs ~—

aggregators

O
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DeepMind

Geometric
Deep Learning
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Remark on geometric deep learning

e We used the blueprint of invariances and equivariances to describe GNNs

e In fact, it is remarkably powerful!l By combining an appropriate
Local and equivariant layer specified over neighbourhoods
Activation functions

(Potentially: pooling layers that coarsen the structure)
Global and invariant layer over the entire domain

o O O O

we recover many standard architectures (including CNNs and Transformers!)

e But also a more general class of geometric deep learning architectures

O



The “Five Gs” of geometric deep learning

Grids

Groups

Graphs

Geodesics &
Gauges

O

Credits to Michael Bronstein



The “Five Gs” of geometric deep learning

Images & Homogeneous Graphs & Sets Manifolds, Meshes &
Sequences spaces Geometric graphs

O

Credits to Michael Bronstein



Some architectures of interest

Architecture

CNN
Spherical CNN
Intrinsic | Mesh CNN

GNN
Deep Sets

Transformer

LSTM

Domain (2
Grid

Sphere / SO(3)
Manifold

Graph
Set

Complete Graph
1D Grid

Symmetry group &

Translation
Rotation SO(3)

Isometry Iso(2) /
Gauge symmetry SO(2)

Permutation X,
Permutation X,
Permutation >,

Time warping

o



DeepMind

Thank you!

Questions?

petarv@deepmind.com | https://petar-v.com

With many thanks to Will Hamilton, Joan Bruna, Michael Bronstein and Taco Cohen
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