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In this talk:
Graph neural networks for biological data
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What this talk is not!
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What this talk is not! £
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50-year-old grand
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@® Experimental result

@® Computational prediction
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What this talk is s ]
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e Hopefully an exciting field from many angles :)
o Molecular interactions
Protein function prediction
Genome assembly
Computational neuroscience
Electronic Health Records

Amino acid Protein
functions, Y

Protein Labelling network, f Tail-GNN, ¢
sequence, T

o O O O

Male Male
Age 76 Age 66

Post Lumbar Spinal Surgery Post Lumbar Spinal Surgery
Congestive Heart Failure ‘ongestive Heart Failure
Hypertension
Pacemaker (position V) ce
Peripl asi

Deep Vein Thrombosis
Non-Insulin Dependent Diabetes

Female
Age 60
Post Lumbar Spinal Surgery
Hypertension

(a) Left hemisphere (b) Ground truth (c) NodeAVG



What this talk is

Hopefully an exciting field from many angles :)

(@)

o O O O

Molecular interactions
Protein function prediction
Genome assembly
Computational neuroscience
Electronic Health Records

More broadly...

@)

(@)

Personal perspective on this rich, interdisciplinary field
For ML audience: you can do it!

m + a blueprint for approaching the area
For Bio audience: hopefully a useful computational tool

(for both: interdisciplinary collaboration can work wonders!)
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Let’s start at the beginning

e Born in Belgrade (Serbia) in the 1990s
o Family members worked for local representatives of “big pharma” (Merck)
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Let’s start at the beginning

e Born in Belgrade (Serbia) in the 1990s
o Family members worked for local representatives of “big pharma” (Merck)

e Gradually increasing interest towards computer science — especially classical algorithms

e Developed strong interest in biology in high school (primarily thanks to Branka Dobrkovié)

I'm a biologist, and Petar already has high experience in computer science. To me this combination
seems like an ideal link for very attractive scientific disciplines in the world — bioinformatics and similar. It
seems to me like this connection of natural sciences with computer science would be the perfect choice for
him.
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Let’s start at the beginning

e Born in Belgrade (Serbia) in the 1990s
o Family members worked for local representatives of “big pharma” (Merck)

e Gradually increasing interest towards computer science — especially classical algorithms
e Developed strong interest in biology in high school (primarily thanks to Branka Dobrkovié)

e Computer Science at Cambridge (2012--15)
o Lost nearly all contact with biology

e Reached out to Prof Pietro Lio for my final-year project
o Realised that bioinformatics is brimming with classical algorithms
o Pietro suggested a project in machine learning, however...
o The rest is history (i.e. this talk)
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Before GNNs...

e |started my PhD in 2016, with a paper classifying breast cancer

e Officially | was a “Research Assistant in Computational Biology”
o  But no formal training in biology!
o Luckily, the field is remarkably accessible and full of interesting problems to solve
o It was very helpful to talk to domain experts and understand the “burning questions”

e Fruitful collaborations lead to Parapred (Bioinformatics) and ChronoMID (PLOS ONE)
o Carefully crafted machine learning solutions to problems posed by domain experts

Parapred: antibody paratope prediction using ChronoMID—Cross-modal neural networks for 3-D temporal
convolutional and recurrent neural networks @  Medical imaging data

Edgar Liberis &, Petar Veli¢kovi¢, Pietro Sormanni &, Michele Vendruscolo, Pietro Lio ~ AleXander G Rakowski, Petar Velickovié, Enrico Dall'Ara ), Pietro Lio

. . Published: February 21, 2020 « https://doi.org/10.1371/journal.pone.0228962
Bioinformatics, Volume 34, Issue 17, 01 September 2018, Pages 2944-2950,

https://doi.org/10.1093/bioinformatics/bty305 ‘q'
Published: 16 April2018 Article history v



Before GNNs...

| started my PhD in 2016, with a paper classifying breast cancer

Officially | was a “Research Assistant in Computational Biology”
o But no formal training in biology!
o Luckily, the field is remarkably accessible and full of interesting problems to solve
o It was very helpful to talk to domain experts and understand the “burning questions”

Fruitful collaborations lead to Parapred (Bioinformatics) and ChronoMID (PLOS ONE)
o Carefully crafted machine learning solutions to problems posed by domain experts

“Game changing” moment in 2017, when | discovered graph representation learning
o  Why should you care?
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Molecules are graphs!

e A very natural way to represent molecules is as a graph
o Atoms as nodes, bonds as edges
o Features such as atom type, charge, bond type...

o



GNNs for molecule classification

e Interesting task to predict is, for example, whether the molecule is a potent drug.
o Can do binary classification on whether the drug will inhibit certain bacteria. (E.coli)
o Train on a curated dataset for compounds where response is known.

N\I(_)

GNN

O
HO

Molecule

_

&

A

Inhibits E.coli?
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Follow-up study

e Once trained, the model can be applied to any molecule.
o Execute on a large dataset of known candidate molecules.
o Select the ~top-100 candidates from your GNN model.

o Have chemists thoroughly investigate those (after some additional filtering).

e Discover a previously overlooked compound that is a highly potent antibiotic!

H,N—_S\__-S
S
A T o,

Halicin
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...Achieve wide acclaim!

Arguably the most popularised success story of graph neural networks to date!

(Stokes et al., Cell'20)

Cell

A Deep Learning Approach to Antibiotic Discovery
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Authors

Jonathan M. Stokes, Kevin Yang,
Kyle Swanson, ..., Tommi S. Jaakkola,
Regina Barzilay, James J. Collins

Correspondence

regina@csail.mit.edu (R.B.),
jimjc@mit.edu (J.J.C.)

In Brief

A trained deep neural network predicts
antibiotic activity in molecules that are
structurally different from known
antibiotics, among which Halicin exhibits
efficacy against broad-spectrum
bacterial infections in mice.
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...Achieve wide acclaim!

Arguably the most popularised success story of graph neural networks to date!

Cell

nature

NEWS . 20 FEBRUARY 2020

Powerful antibiotics discovered using Al

Machine learning spots molecules that work even against ‘untreatable’ strains of
bacteria.

(Stokes et al., Cell'’20) !"""‘“’% v ‘ goc
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...Achieve wide acclaim!

FINANCIAL TIMES
Arguably the most popula

S COMPANIES TECH MARKETS GRAPHICS OPINION WORK & CAREERS LIFE & ARTS HOW TO SPEND IT

CORONAVIRUS BUSINESS UPDATE
na ure Get 30 days’ complimentary access to our Coronavirus Business

Update newsletter

l intelligence

Robotics ‘Death of the office’ homeworking
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Powerful an..........

Machine learning spot; Al discovers antibiotics to treat drug-resistant
bacteria. diseases
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Bl @ increase social distanci

(Stokes et al,, Cell'20) ‘ @

Machine learning uncovers potent new drug able to kill 35 powerful bacteria



...Achieve wide acclaim!
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GNNs are a very hot research topic

. deep learning
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GNNs are currently experiencing their
“ImageNet” moment
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Rich ecosystem of libraries
O 2
. Pygggn':&rh m Spektral

github.com/rustyls/pytorch geometric graphneural . network

u— o |-
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github.com/deepmind/graph nets

github.com/deepmind/jraph
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Rich ecosystem of datasets

OGB o Pygecgnl;g;rtg /* TUDataset

ogb.stanford. edu graphlearning.io

https://pytorch-geometric. readthedocs.
io/en/latest/modules/datasets.html

Benchmarking Graph Neural Networks

github.com/graphdeeplearning/benchmarking-gnns

O



How to process the graph?

XN, = {Xa)Xp, Xc, X4, Xe I} @



What’s in a GNN layer?

We construct useful functions over graphs, f, by shared application of a local
permutation-invariant function g(x, X, ).
o We often refer to f as “GNN layer”, g as “diffusion”, “propagation”, “message passing”

We will take a quick look at ways in which we can actually concretely define g.
o Very intense area of research!

Fortunately, almost all proposed layers can be classified as one of three spatial “flavours”.

O



The three “flavours” of GNN layers

Xa Xa
Cha (jbl)
\Xb < Che Xe

/de/ \Cbe
X X, X4
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h; = ¢ | xi, P cijv(x;)
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Convolutional GNN

Features of neighbours aggregated with fixed weights, c;

Usually, the weights depend directly on A.
ChebyNet (Defferrard et al, NeurlPS"16)

(@)

@)

(@)

Useful for homophilous graphs and scaling up

(@)

h; = ¢ | xi, P cijib(x;)
JEN;

GCN (Kipf & Welling, ICLR'17)
SGC (Wu et al., ICML"19)

When edges encode label similarity

Xa
Cha (fbl)
\Xb < Cbe
N
bd Cbe
/ N
Xd Xe
Convolutional
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Attentional GNN

e Features of neighbours aggregated with implicit weights (via attention)

h; = ¢ X, @ a(xi,xj)WP(Xj) X e,
JEN; \< N
Qpq A
e Attention weight computed as Q; = a(x, xj) *\(} )
o MoNet (Monti et al, CVPR7) ) Xb < e
o  GAT (Velickovié et al, ICLR'18) 7 \ T
o GaAN (Zhangetal, UAINS) . > Oy o

e Useful as “middle ground” w.r.t. capacity and scale Xd

o Edges need not encode homophily Attentional
o  But still compute scalar value in each edge

O



Message-passing GNN

e Compute arbitrary vectors (“messages”) to be sent across edges

hi = ¢ | xi, D ¥(xi, %) g,

JEN; 9

® Messages computed as m, = p(x, xj)
o Interaction Networks (Battaglia et al,, NeurlPS'16)
o  MPNN (Gilmer et al, ICML17)
o GraphNets (Battaglia et al, 2018)

e Most generic GNN layer Xd

o May have scalability or learnability issues
o Ideal for computational chemistry, reasoning and simulation

.
L

Message-passing

O



How to use GNNSs?

G R S B e R i N A R G Rt R o G FLi e
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How to use GNNSs?

G R L B e Rl i N A R G Bt Ao o G FLi e

T e e M el Gt Bt Mk T Tl o et ? K
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How to use GNNSs?

G R L B e Rl i N A R G Bt Ao o G FLi e

Node classification

Z; — f(hi)

O



How to use GNNSs?

Node classification

Z; — f(hi)

Graph classification

zg = f (Gaiev hi)

O



How to use GNNSs?

Node classification

Z; — f(hi)

Graph classification

zg = f (GBiEV hi)

G R L B e Rl i N A R G Bt Ao o G FLi e

Link prediction
z;; = f(h;,hj, e;;)

O




If you'd like to know more

For (substantially!) more context, | recently gave a talk on theoretical GNN foundations:
https://www.youtube.com/watch?v=uF53xsT7mjc

DeepMind

Theoretical Foundations

of Graph Neural Networks

Petar Velickovi¢

CST Wednesday Seminar
17 February 2021

O


https://www.youtube.com/watch?v=uF53xsT7mjc

...Back to the past 52

e In 2017, as part of my Mila internship we proposed Graph Attention Networks (GATs)
o  One of the first prominent examples of attentional GNN
o They remain a popular model to this day

e |t was only loosely clear that models like these could benefit my biological projects
o We set out to find out exactly how...

O



DeepMind

CNNs* for Mesh-based Parcellation
of the Cerebral Cortex

Guillem Cucurull, Konrad Wagstyl, Arantxa Casanova, Petar Velickovié,
Estrid Jakobsen, Michal Drozdzal, Adriana Romero, Alan Evans and Yoshua Bengio




Cortex parcellation

e Different areas of the cerebral cortex are
involved in different cognitive processes
o Visual processing
o Language comprehension

e Mapping these areas helps us understand how Bl Auoor Il sersory/motor Bl v
the cortex is organised

. Task positive l } Task negative

e Our graph attention network paper was, in fact,
built for this very purpose :)

e We focus on regions 44 and 45 of Broca'’s area:




What is a cortical mesh?

e Common coordinate system
e Canrepresent multiple modalities and features

e Can be used to coregister cortical surfaces
between different individuals

e \We can run a GNN over the nodes in the mesh!
o Classify nodes as “44", “45", or “background”.




Quantitative results
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Quantitative results
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Quantitative results
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Quantitative results

+ Node positional features!
70

59.7 59.2
e 52.4
51.8 .
49.9
50
8847
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CN GAT

NodeMLP NodeAVG MeshMLP Jakobsen G

Jaccard
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Qualitative results

(a) Left hemisphere (b) Ground truth (¢) NodeAVG

Y g Y N

(d) NodeMLP (e) Jakobsen et al. [21] (f) GCN (g) GAT @




With hindsight...

e Meshes come with a lot of useful geometry

O

@)

Evident by utility of positional features

(Vanilla) GNNs would discard that information

e We now have a wealth of architectures that are specialising for the mesh domain!

(@)

(@)

O

Geodesic CNN (Masci et al.)
MoNet (Monti et al.)

Gauge Equivariant Mesh CNN (de Haan et al.)

e All of the above would make great choices for processing the brain mesh!

(@)

(@)

Perhaps an interesting future project? ¢
Reach out to me if you're curious!

\ q R(g4-) P ‘ /

(a) Parallel transport on a flat mesh.

(b) Parallel transport along an edge of a general mesh.



...Back to the past

e This project proved to me the untapped utility that GNNs can have in biological problems
o  We applied the GCN and GAT models pretty much out-of-the-box!

e Now was the time to revisit my earlier collaboration (Parapred) under this lens.

O


https://emojipedia.org/brain/

DeepMind

Attentive Cross-modal
Paratope Prediction

Andreea Deac, Petar Velickovié and Pietro Sormanni

O



Motivation for antibody design

Antibodies are
o Y-shaped proteins
o acritical part of our immune system

They neutralise pathogenic bacteria and viruses by
tagging the antigen in a “lock and key” system.

Designing our own arbitrary antibodies would be a big
step towards personalised medicine.

(You've probably heard a whole lot about antibodies
and antigens in the past year...)

Antigens

Antigen

27Antigen—binding site

A

Antibody

4

O



Towards personalised medicine

e Generating an antibody requires first predicting the specific amino acids (the paratope)
which participate in the neutralisation of the antigen.

e Input: a sequence of (one-hot encoded) antibody amino acids.

(+ a sequence of (one-hot encoded) antigen amino acids)

e Output: probability for each amino acid to participate in the binding with the antigen.

O



Paratope prediction

6—t+—3—— P(p; is binding)

) Paratope predictor
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ab — 1DConv

Parapred and Fast-Parapred architecture
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Paratope prediction (+ antigen)

2 AT 96 P(p; is binding)
_ %} _ «—\ Paratope predictor
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Fast-Parapred
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AG-Fast-Parapred

DilatedConv
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AG-Fast-Parapred

ab —| DilatedConv —> j —>| Attention —> « X )
3x

ag —> DilatedConv > g
o b =0 ) a(bi,g)g;

JEV;

~ GAT over fully-connected antibody/antigen graph!

>@ > Dense —> p




Quantitative results

Precision

©
~

o
o

0.4

0.3 A

—— Parapred
—— Fast-Parapred
- AG-Fast-Parapred
¢ Antibody i-Patch

0.0

0.2

0.4

ROC AUC

Epoch time

proABC 0.851
Parapred

Fast-Parapred 0.883 £ 0.001

0.880 +0.002 0.564 +0.005 0.190+ 0.019s
0.572+£0.004 0.085+ 0.015s

AG-Fast-Parapred

0.899 + 0.004 0.598 +0.012 0.178 £ 0.020s

0.6 0.8 1.0
Recall
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Qualitative results

The model learns the antibody/antigen geometry without being given any positional information! @



...Back to the past

e Now it was apparent that stitching GNNs into protein-protein interaction made sense!

e Could we explore some other cases of molecular interaction?

O



DeepMind

Drug-Drug Adverse Effect
Prediction with Graph Co-Attention

Andreea Deac, Yu-Hsiang Huang, Petar Veli¢kovié, Pietro Lido and Jian Tang

O



Drug use is increasing

2000 20m

Prescription Drug Use 51% 59%

>5 drugs

82% 15%

Nominal and inflation-adjusted per capita spending on retail prescription drugs, 1960-2017
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Polypharmacy

e Polypharmacy is the concurrent use of multiple medications by a patient.

e Itis necessary for chronic, complex or multiple conditions and most of the increase in cost
comes from treating these.

e “Hulk & Iron Man” analogy: drugs correspond to ‘heroes’, but putting them together can
destroy the surrounding city!

O






Adverse side-effects

e Side effects affecting 15% of the population, treatment costs exceeding $177 billion/year

e Some found in Phase IV of clinical trials

e But plenty are undiscovered when the drugs are put on the market

O



Related work

e Most models predict if a side-effect exists or
. T . E Polypharmacy Q
not (using drug-drug similarity: chemical DoxycyclineASide effectS/ASimvastatin
substructures, individual drug side effects, A= =

interaction profile fingerprints) r—af Mupirocin

e Others model the interactions between pairs of
drugs, pairs of proteins and drug-protein pairs

to predict “missing” links between them. E
e We, instead, represents molecules as graphs! ADng. @ Frolein H  Node feature vector
r1 Gastrointestinal bleed side effect A—© Drug-protein interaction
2 Bradycardia side effect O—O Protein-protein interaction

* Modeling polypharmacy side effects with graph convolutional networks, Zitnik et al, 2018 ‘q'



DDI - Tasks

Yes/No

|

Tachycardia? Inflammation? Bradycardia? Gastrointestinal bleed?

DDI predictor (binary)

|

H OH ’
\"/ HO N ™~ Tachycardia N\”/ HO. H
- ~
5 ] ﬁ
HO HO H

Drug 1

|

Drug 2

DDI predictor (multi-label)

| |

Side-effect Drug 1 Drug 2
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Graph co-attention
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The (MH)CADDI Architecture
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Variants considered

e MPNN-Concat: removing co-attention, i.e. learning drug representations independently;
e Late-Outer: where co-attention messages are not aggregated until the last layer;
e CADDI: only K = 1 attention head.

O



Quantitative results

Table 1: Comparative evaluation results after Table 2: Ablation study for various aspects of
stratified 10-fold crossvalidation. the MHCADDI model.
AUROC AUROC
Drug-Fingerprints [21] 0.744 MPNN-Concat  0.661
Late-Outer 0.724
RESCAL [30] 0.693 CADDI 0.778
DEDICOM [31] 0.705 MHCADDI 0.882
DeepWalk [32] 0.761
Concatenated features [46] 0.793
Decagon [46] 0.872
MHCADDI (ours) 0.882

MHCADDI-ML (ours) 0.819




...Back to the past ¢

e |t was ~at this point | graduated from my PhD, and joined DeepMind

e Gradually oriented back towards classical algorithms, and away from biology
o Luckily, biology is packed with interesting classical algorithms :)

e The following three works (time permitting) represent a medley of biological approaches |
was involved in during this time.
o  Two of these opportunities came not far from home :)
o The third one was years in the making!

O



DeepMind

Hierarchical Protein Function
Prediction with Tail-GNNs

Stefan Spalevic, Petar Veli¢kovi¢, Jovana Kovacevi¢ and Mladen Nikoli¢

e I8 1'\! A /Jl ?

i | Ah \

O



Protein function prediction

e Detecting mechanisms of action for proteins is a highly relevant task!

e Itis also an area ripe with graphs!
o Protein itself can be represented as a graph (if known structure; Gligorijevic et al.)
o  Protein-protein interaction networks are graphs (standard PPl benchmark for GNNs)
o In this particular domain, a graph comes up in one more place...

o



Protein function prediction

e The label space of functions is itself a graph! (gene ontology)

molecular
function
I
binding
3 i 2 rotein-cont| |
heterocyclid |organic cyc chromatin protein drug lipid small oniBindin pcom lex Cal.b Oh.y o
pompound || compound || “pinging || binding || binding || binding || melecule ||onbmaing|| (o ne || derivative
binding binding £ £ € g binding incing binding
nucleic acid} sTgnal;m.g enzyme
binding ;;‘;ll?n"g‘ binding
] |
. . TELNEPLSNEERNLLSVAYKNVVGARRSSWRVISSTEQK TSADGNEKKTE . . . RNA e
binding binding
]
protein
kinase
binding

e Requires a GNN in the label space

o  Our literature survey suggested no proposals like this!

o Once again, a biological problem motivates a core architecture
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Quantitative results

e With the right aggregator choice + spectral features, yields significant benefits!

Model Validation F} Test F;

Labelling network  0.582 +0.003  0.584 £ 0.003
Tail-GNN-mean 0.583 =0.006  0.586 = 0.004
Tail-GNN-GAT 0.582£0.004 0.587 = 0.005
Tail-GINN-max 0.581 £0.002  0.585 =+ 0.004
Tail-GNN-sum 0.596 = 0.003 0.600 =+ 0.003

Tail-GNN-sum
(no spectral fts.)

0.587 £0.007  0.590 £ 0.008
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A Step Towards
Neural Genome Assembly
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Genome assembly
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Genome assembly

Multiple Copies of a Genome (Millions of them)

stack of NY Times, June 27, 2000

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

Breaking the Genomes at Random Positions

SO
Pk

CTGATG*GGACT CGC*CTACTGC*G CTGTATTA*ATCAGCTACC ATCGTAG! CTA*ATGCATTAG(*G CTATCG*TCAGCTAC*CAT GTAGC
CTGA TGGACT&GCTACTACT‘*TAGCTGTAT CGATCAGC*CCACATCGT CTACGATGC*TAGCAAGC CGGATCA*TACCACAT TAGC
CTGATG, GGACTACG*ACTACTGCTA*TGTATTAC TCAG CTA*ACATCGTAG C*CGATGCATT CAAGCTAT! GATCAGCT*CACATCGTAG C
CTGATGATG*CTACGCTA CTGCTAG! CT*ATTACGAT*G CTACCAC*CGTAG CTACG*GCATTAGCA*CTATC GG, CAGCTACCA*TCGTAG C

“Burning” Some Reads

CTGATGA TACTGCTAG CTGTATTACG TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC
CTGATGATG GACTACGCT ACTACTGCTA ATCAGCTACC ACATCGTAGCT GCAAGCTATC GGATCAGCTAC CACATCGTAGC
CTGATGATGG TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A CATCGTAGC

CTGATGATGGACT ACGCTACTACT TACGATCAGC TACCACATCGT AGCTACGATGCA ATCGGATCA GCTACCACATC GTAGC



Genome assembly
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Genome assembly using Hamiltonian paths

TAATGCCATGGGATGTT




But... the reads are faulty!

e Learn algorithms to prune errors

Figure 1: Example of structures in the assembly graph, before all the simplification steps. Letter A
marks transitive edges, a short tip is marked with B, and a bubble which cannot be fully resolved is
marked with C. Red crosses show which edges can be removed from the assembly graph.



Towards neural genome assembly

Table 1: Scaling of algorithm execution for isolated learning of algorithms.

Pre-train on synthetic graphs.. Scaling
Algorithm 1x 2x 4x 8x 20x
. ) | Transitive removal 98.10% 99.00% 99.52% 99.76% 99.91%
..generalises to real organisms! Tips trimming 98.05% 98.96% 99.49% 99.70% 99.87%

Bubble popping 98.16% 99.03% 99.53% 99.77% 99.90%

Table 2: Scaling of algorithm execution for parallel learning of algorithms.

Scaling
Algorithm 1x 2x 4x 8x 20x
Transitive removal 98.21% 99.07% 99.50% 99.89% 99.92%
Tips trimming 98.45% 99.11% 99.46% 99.76% 99.89%

Bubble popping 98.17% 99.02% 99.51% 99.78%  99.90%

Table 3: Parallel algorithm execution on the assembly graph of lambda phage.

Transitive removal Tips trimming Bubble popping

Lambda phage 98.04% 93.33% 97.47%
E. coli 99.67% 98.84% 99.26%

O



Further insight: Algorithmic reasoning

If you would like to know more details about teaching GNNs to be more “algorithmic”:

DeepMind DeepMind

Graph Representation Learning Algorithmic Inductive Biases

for Algorithmic Reasoning

Petar Velickovi¢ Petar Velickovi¢

DLAG@WWW2020 DLG-KDD20
21 April 2020 24 August 2020

https://drive.google.com/file/d/1 EQ9Yu7VEkvr
HaVH1 WbTS5ABvxrSNY-s/view?usp=sharing ‘f.’

https://www.yvoutube.com/watch?v=IPQ6CPoluok



https://www.youtube.com/watch?v=IPQ6CPoluok
https://drive.google.com/file/d/1_EQ9Yu7VEkvrHaVHl_WbT5ABvxrSNY-s/view?usp=sharing
https://drive.google.com/file/d/1_EQ9Yu7VEkvrHaVHl_WbT5ABvxrSNY-s/view?usp=sharing

Broader context: Combinatorial Optimisation

Combinatorial optimization and reasoning Our 43-page survey on GNNs for CO!
with graph neural networks

Quentin Cappart’, Didier Chételat?, Elias Khalil®>, Andrea Lodi?, https://arxiv.org/abs/2102.09544
Christopher Morris?, and Petar Velickovi¢*

'Department of Computer Engineering and Software Engineering, Polytechnique Montréal . . . . .
2CERC in Data Science for Real-Time Decision-Making, Polytechnique Montréal Section 3.3. details al gorl thmic reasonin g

3Department of Mechanical & Industrial Engineering, University of Toronto with com pre hensive references
“DeepMind ’

Combinatorial optimization is a well-established area in operations research and
computer science. Until recently, its methods have focused on solving problem
instances in isolation, ignoring the fact that they often stem from related data
distributions in practice. However, recent years have seen a surge of interest in
using machine learning, especially graph neural networks (GNNs), as a key building
block for combinatorial tasks, either as solvers or as helper functions. GNNs are
an inductive bias that effectively encodes combinatorial and relational input due
to their permutation-invariance and sparsity awareness. This paper presents a
conceptual review of recent key advancements in this emerging field, aiming at

both the optimization and machine learning researcher. ‘q


https://arxiv.org/abs/2102.09544

DeepMind

Predicting Patient Outcomes with
Graph Representation Learning

Emma Rocheteau*, Catherine Tong*, Petar Veli€kovi¢, Nicholas Lane and Pietro Lio




Electronic Health Records (EHRS) in the ICU

e EHRs can provide plentiful information about a patient’s progression
o But not all data contained in there are easy to leverage by deep learning systems!

e Today, we focus on diagnoses.

e |

l
—“-

Interventions




Diagnosis information is hard to use

e Large number of possibilities makes distinguishing patterns of comorbidity difficult.

| |

Diabetes Subarachnoid
haemorrhage

e There is alack of data for rarer combinations.
o Along tail of rare diagnoses, difficult for deep learning models to leverage!

O



Distribution of diagnoses in eICU
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The “pattern recognition” method

e Commonly, the “long tail” of diagnoses is discarded and the rest embedded.
o  But this long tail often holds the most useful cues, which diagnosticians regularly use!

e How do clinicians often make decisions about diagnoses or prognoses?
e The pattern recognition diagnostic method, as described by Wikipedia:

“In a pattern recognition method the provider uses experience to recognize a pattern of clinical
characteristics... This may be the primary method used in cases where diseases are ‘obvious’, or
the provider's experience may enable him or her to recognize the condition quickly.”

e We interpret experience as exploitation of related cases the clinician treated in the past.
o Hence, the cases form a graph! @




These links definitely exist :)




The graph of patients

e Key assumption: patients with related diagnoses will likely have related prognoses!

& \ A
\a \.

-

e If we use this signal wisely, it can be a great way to regularise our model and make
advantage of sparse diagnosis data.

O



How to build the graph?

e The “relatedness” score between two patients i and j is given by:

Mij=ad DiyDju(d;' +7) = Y Diy+ Dy,
p=1 p=1

where:

D is a diagnosis matrix (s.t. Di/, means “does patient i have diagnosis x"?)
d is the frequency of diagnosis «

m is the number of diagnoses

a and y are hyperparameters

o O O O

e Can threshold based on the relatedness scores

O



Hybrid LSTM-GNN model

@ Construct Graph @ LSTM Embeddings @ GNN Embeddings
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Our results
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a )

Male

Age 76

Post Lumbar Spinal Surgery
Congestive Heart Failure
Hypertension

Pacemaker (position V)

A /

Female
Age 60
Post Lumbar Spinal Surgery
Hypertension

Qualitative: LSTM-GAT Attention weights

e N

Age 66

Post Lumbar Spinal Surgery
Congestive Heart Failure
Hypertension

Pacemaker (position unknown)
Peripheral Vascular Disease
Deep Vein Thrombosis
Non-Insulin Dependent Diabetes

Qﬂve Disease /

Male
Age 71

Post Lumbar Spinal Surgery
Hypertension
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AAATI’21 Workshop Recognition

Awards

Best short paper ($250 winner, $125 runner-up)
Runner-up
Emma Rocheteau, Catherine Tong, Petar Velickovi¢, Nicholas

Lane and Pietro Li0. Predicting Patient Outcomes with Graph
Representation Learning

Winner
Beatrice Portelli, Daniele Passabi, Edoardo Lenzi, Giuseppe

Serra, Enrico Santus and Emmanuele Chersoni. Improving
Drug Event Extraction with SpanBERT on Different Text Typ
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In conclusion...

Studying biological problems with graph representation learning is likely here to stay
o Abundance of data “sitting and waiting to be processed”
o In many problems of interest, state-of-the-art is still a shallow method
o Often, biological problems can give rise to core methodological progress.

With the right mindset, no proper biological training is needed!
o Just the ability to carefully listen, and work together with biologists.

For biologists: | hope I've convinced you that GNNs could be a useful tool!

But ultimately, | would love to stimulate, and see even more of, interdisciplinary research.

O
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Thank you!

Questions?
petarv@google.com | https://petar-v.com
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