
Demystifying deep learning
Petar Veličković

Artificial Intelligence Group
Department of Computer Science and Technology, University of Cambridge, UK

London Data Science Summit 20 October 2017



Introduction

I In this talk, I will guide you through a condensed story of how
deep learning became what it was today, and where it’s going.

I This will involve a journey through the essentials of how neural
networks normally work, and an overview of some of their
many variations and applications.

I Not a deep learning tutorial! (wait for Sunday. :))

I Disclaimer: Any views expressed (especially with respect to
influential papers) are entirely my own, and influenced perhaps
by the kinds of problems I’m solving. It’s fairly certain that any
deep learning researcher would give a different account of
what’s the most important work in the field. :)



Motivation: notMNIST

I Which characters do you see? (How did you conclude this?)

I Imagine someone asked you to write a program that
recognises characters from arbitrary glyphs. . .



Intelligent systems

I Although the previous task was likely simple to you, you
(probably) couldn’t turn your thought process into a concise
sequence of instructions for a program!

I Unlike a “dumb” program (that just blindly executes
preprogrammed instructions), you’ve been exposed to a lot of A
characters during your lifetimes, and eventually “learnt” the
complex features making something an A!

I Desire to design such systems (capable of generalising from
past experiences) is the essence of machine learning!

I How many such systems do we know from nature?



Specialisation in the brain

I We know that different parts of the brain perform different tasks:

I There is increasing evidence that the brain:
I Learns from exposure to data;
I Is not preprogrammed!



Brain & data

I The majority of what we know about the brain comes from
studying brain damage:

I Rerouting visual inputs into the auditory region of baby ferrets
makes this region capable of dealing with visual input!

I As far as we know (for now), the modified region works equally
good as the visual cortex of healthy ferrets!

I If there are no major biological differences in learning to
process different kinds of input. . .

I =⇒ the brain likely uses a general learning algorithm, capable
of adapting to a wide spectrum of inputs.

I We’d very much like to capture this algorithm!



A real neuron!



An artificial neuron!

Within this context sometimes also called a perceptron (. . . )

Σ

+1

x1

x2

x3

xn

b
w

1

w2

w3

w n
(

b +
n∑

i=1
wixi

)
> 0?

...

This model of a binary classifier was created by Rosenblatt in 1957.



Gradient descent

I There needed to be a way to learn the neuron’s parameters
(~w ,b) from data.

I One very popular technique to do this was gradient descent—if
we have a way of quantifying the errors (a differentiable loss
function, L) that our neuron makes on training data, we can
then iteratively update our weights as

~wt+1 ← ~wt − η
∂L
∂~w

∣∣∣∣
~wt

where the gradients ∂L
∂~w are computed on the training data.

I Here, η is the learning rate, and properly choosing it is
critical—remember it, it will be important later on!



Gradient descent



Custom activations

I Fundamental issue: the function we apply to our network’s
output (essentially the step function) is non-differentiable!

I Solution: use its smooth variant, the logistic sigmoid

σ(x) =
1

1 + exp(−ax)

and classify depending on whether σ(x) > 0.5.
I We can generalise this to k -class classification using the

softmax function:

P(Class i) = softmax(~x)i =
exp(xi)∑
j exp(xj)



The logistic function

0

0.5

1



The loss function

I If we now define a suitable loss function to minimise, we may
train the neuron using gradient descent!

I If we don’t know anything about the problem, we may often use
the squared error loss—if our perceptron computes the function
h(~x ; ~w) = σ

(
b +

∑n
i=1 wixi

)
, then on training example (~xp, yp):

Lp(~w) = (yp − h(~xp; ~w))
2

I Since the logistic function outputs a probability, we may exploit
this to create a more informed loss—the cross-entropy loss:

Lp(~w) = −yp log h(~xp; ~w)− (1− yp) log(1− h(~xp; ~w))

You may recognise the setup so far as logistic regression.



The infamous XOR problem



Neural networks and deep learning

I To get any further, we need to be able to introduce nonlinearity
into the function our system computes.

I It is easy to extend a single neuron to a neural network—simply
connect outputs of neurons to inputs of other neurons.

I If we apply nonlinear activation functions to intermediate
outputs, this will introduce the desirable properties.

I Typically we organise neural networks in a sequence of layers,
such that a single layer only processes output from the
previous layer.



Multilayer perceptrons

The most potent feedforward architecture allows for full connectivity
between layers—sometimes also called a multilayer perceptron.

Σ σ

+1

x1

x2

x3

xn

b
w

1

w2

w3

w n

σ

(
b +

n∑
i=1

wixi

)

...

I1

I2

I3

Input
layer

Hidden
layer

Output
layer

O1

O2



Backpropagation

I Variants of multilayer perceptrons (MLPs) have been known
since the 1960s. In a way, everything that modern deep
learning is utilising are specialised MLPs!

I Stacking neurons in this manner will preserve differentiability,
so we can re-use gradient descent to train them once again.

I However, computing ∂L
∂w ′ for an arbitrary weight w ′ in such a

network was not initially very efficient. . .

I . . . until 1985, when the backpropagation algorithm was
introduced by Rumelhart, Hinton and Williams.



Backpropagation

Compute gradients directly at output neurons, and then propagate
them backwards using the chain rule!

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

error

Error backpropagation



Hyperparameters

I Gradient descent optimises solely the weights and biases in
the network. How about:

I the number of hidden layers?
I the amount of neurons in each hidden layer?
I the activation functions of these neurons?
I the number of iterations of gradient descent?
I the learning rate?
I . . .

I These parameters must be fixed before training commences!
For this reason, we often call them hyperparameters.

I Optimising them remains an extremely difficult problem—we
often can’t do better than separating some of our training data
for evaluating various combinations of hyperparameter values.



Neural network depth

I I’d like to highlight a specific hyperparameter: the number of
hidden layers, i.e. the network’s depth.

I What do you think, how many hidden layers are sufficient to
learn any (bounded continuous) real function?

I One! (Cybenko’s theorem, 1989.)

I However, the proof is not constructive, i.e. does not give the
optimal width of this layer or a training algorithm.

I We must go deeper. . .
I Every network with > 1 hidden layer is considered deep!
I Today’s state-of-the-art networks often have over 150 layers.



Neural network depth

I I’d like to highlight a specific hyperparameter: the number of
hidden layers, i.e. the network’s depth.

I What do you think, how many hidden layers are sufficient to
learn any (bounded continuous) real function?

I One! (Cybenko’s theorem, 1989.)

I However, the proof is not constructive, i.e. does not give the
optimal width of this layer or a training algorithm.

I We must go deeper. . .
I Every network with > 1 hidden layer is considered deep!
I Today’s state-of-the-art networks often have over 150 layers.



Neural network depth

I I’d like to highlight a specific hyperparameter: the number of
hidden layers, i.e. the network’s depth.

I What do you think, how many hidden layers are sufficient to
learn any (bounded continuous) real function?

I One! (Cybenko’s theorem, 1989.)

I However, the proof is not constructive, i.e. does not give the
optimal width of this layer or a training algorithm.

I We must go deeper. . .
I Every network with > 1 hidden layer is considered deep!
I Today’s state-of-the-art networks often have over 150 layers.



Deep neural networks

I3I2I1

O2O1

×∞



Quiz: What do we have here?



DeepBlue vs. AlphaGo

I Main idea (roughly) the same: assume that a grandmaster is
only capable of thinking k steps ahead—then generate a
(near-)optimal move when considering k ′ > k steps ahead.

I DeepBlue does this exhaustively, AlphaGo sparsely (discarding
many “highly unlikely” moves).

I One of the key issues: when stopping exploration, how do we
determine the advantage that player 1 has?

DeepBlue: Gather a team of chess experts, and define a function
f : Board → R, to define this advantage.

AlphaGo: Feed the raw state of the board to a deep neural network, and
have it learn the advantage function by itself.

I This highlights an important paradigm shift brought about by
deep learning. . .



Feature engineering

I Historically, machine learning problems were tackled by
defining a set of features to be manually extracted from raw
data, and given as inputs for “shallow” models.

I Many scientists built entire PhDs focusing on features of interest
for just one such problem!

I Generalisability: very small (often zero)!

I With deep learning, the network learns the best features by
itself, directly from raw data!

I For the first time connected researchers from fully distinct areas,
e.g. natural language processing and computer vision.

I =⇒ a person capable of working with deep neural networks
may readily apply their knowledge to create state-of-the-art
models in virtually any domain (assuming a large dataset)!



Representation learning

I As inputs propagate through the layers, the network captures
more complex representations of them.

I It will be extremely valuable for us to be able to reason about
these representations!

I Typically, models that deal with images will tend to have the
best visualisations.

I Therefore, I will now provide a brief introduction to these
models (convolutional neural networks). Then we can look into
the kinds of representations they capture. . .



Working with images

I Simple fully-connected neural networks (as described already)
typically fail on high-dimensional datasets (e.g. images).

I Treating each pixel as an independent input. . .
I . . . results in h × w × d new parameters per neuron in the first

hidden layer. . .
I . . . quickly deteriorating as images become larger—requiring

exponentially more data to properly fit those parameters!

I Key idea: downsample the image until it is small enough to be
tackled by such a network!

I Would ideally want to extract some useful features first. . .

I =⇒ exploit spatial structure!



The convolution operator



Enter the convolution operator

I Define a small (e.g. 3× 3) matrix (the kernel, K).

I Overlay it in all possible ways over the input image, I.

I Record sums of elementwise products in a new image.

(I ∗ K)xy =
h∑

i=1

w∑
j=1

Kij · Ix+i−1,y+j−1

I This operator exploits structure—neighbouring pixels influence
one another stronger than ones on opposite corners!

I Start with random kernels—and let the network find the optimal
ones on its own!



Convolution example

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗ K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1



Convolution example

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗ K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1



Convolution example

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗ K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1



Convolution example

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗ K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1



Downsampling (∼ max-pooling)

Convolutions light up when they detect a particular feature in a
region of the image. Therefore, when downsampling, it is a good
idea to preserve maximally activated parts. This is the inspiration
behind the max-pooling operation.

12 20 30 0

8 12 2 0

34 70 37 4

112 100 25 12

20 30

112 37

2× 2 Max-Pool



Stacking convolutions and poolings

Rough rule of thumb: increase the depth (number of convolutions)
as the height and width decrease.

Conv. Pool Conv. Pool

FC

FC

Softmax



CNN representations

I Convolutional neural networks are by no means a new
idea. . . they’ve been known since the late 1970s!

I Popularised by LeCun et al. in 1989 to classify handwritten
digits (the MNIST dataset, now a standard benchmark).



LeNet-1



Observing kernels

I Typically, as the kernels are small, gaining useful information
from them becomes difficult already past the first layer.

I However, the first layer of kernels reveals something
magical. . . In almost all cases, these kernels will learn to
become edge detectors!



Passing data through the network: Input

I3I2I1

O2O1



Passing data through the network: Shallow layer

I3I2I1

O2O1



Passing data through the network: Deep layer

I3I2I1

O2O1



Passing data through the network: Output

I3I2I1

O2O1



Sequential inputs

I Now, consider a classification problem where the input is
sequential—a sequence consisting of arbitrarily many steps,
wherein at each step we have n features.

I This kind of input corresponds nicely to problems involving
sound or natural language.

~x1 ~x2 ~x3 ~x4 ~x5 . . . ~xt . . .

I The fully connected layers will no longer even work, as they
expect a fixed-size input!



Making it work

Key ideas:
I Summarize the entire input into m features (describing the

most important patterns for classifying it);

I Exploit relations between adjacent steps—process the input in
a step-by-step manner, iteratively building up the features, ~h:

~ht = f (~xt , ~ht−1)

I If we declare a pattern to be interesting, then it does not matter
when it occurs in the sequence =⇒ employ weight sharing!



An RNN cell

RNN

~xt

~yt

~yt−1



Unrolling the cell. . .

RNN RNN RNN

Compute ~yT iteratively, then feed it into the usual
multilayer perceptron to get the final answer.

. . . RNN

~x1 ~x2 ~x3 ~xT

~yT

~y0

~y1 ~y2 ~y3 ~yT−1

. . .

N.B. Every RNN block has the same parameters!



RNN variants

I Initial versions (SimpleRNN) introduced by Jordan (1986),
Elman (1990). Simply apply a fully-connected layer on both ~xt
and ~yt−1, and apply an activation.

I Suffers from vanishing gradients over long paths (as
σ′(x) < 1). . . cannot capture long-term dependencies!

I The problem is solved by the long short-term memory (LSTM)
model (Hochreiter and Schmidhuber, 1997). The LSTM cell
explicitly learns (from data!) the proportion by which it forgets
the result of its previous computations.

I Several models proposed since then, but none improve
significantly on the LSTM on average.



An LSTM block

new fts.

input gate

forget gate

output gate

~xt

~yt−1 × + σ × ~yt

×

M

~ct−1

~ct

LSTM



Where are we?

I By now, we’ve covered all the essential architectures that are
used across the board for modern deep learning. . .

I . . . and we’re not even in the 21st century yet!

I It turns out that we had the required methodology all along, but
several key factors were missing. . .

I demanding gamers (∼ GPU development!)
I

:::::::::::::
big companies (∼ lots of resources, and DL frameworks!)

I big data (∼ for big parameter spaces!)

I So, what’s exactly new, methodologically?



Improving gradient descent

I In the past, gradient descent was performed in a batch fashion,
by accumulating gradients over the entire training set:

~w ← ~w − η
m∑

p=1

∇Lp(~w)

For big datasets, this may not only be remarkably expensive for
just one step, but may not even fit within memory constraints!



Stochastic gradient descent (SGD)

I This problem may be solved by using stochastic gradient
descent—at one iteration consider only one (randomly chosen)
training example (xp′ , yp′):

~w ← ~w − η∇Lp′(~w)

I In practice, we use the “golden middle”—consider a randomly
chosen minibatch of examples, B = {(x1, y1), . . . , (xbs, ybs)}.

~w ← ~w − η
bs∑

p=1

∇Lp(~w)

I We also have efficent methods to automatically estimate the
optimal choice of η (such as Adam and RMSProp).



Vanishing gradients strike back

I As networks get deeper, the same kind of vanishing gradient
problem that we used LSTMs to solve appears with
non-recurrent networks.

I We cannot really re-use ideas from LSTMs here cleanly. . .

I Solution: change the activation function! The rectified linear
unit (ReLU) is the simplest nonlinearity not to suffer from this
problem:

ReLU(x) = max(0, x)

as its gradient is exactly 1 when “active” and 0 when “dead”.

I First deployed by Nair and Hinton in 2010, now ubiquitous
across deep learning architectures.



Better regularisation

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y

Learning the sine function

Training set
Target
Linear fit
Degree-3
Degree-14



Dropout

dropout ×
×

×

×

×

×

×

I Randomly “kill” each neuron in a layer with probability p during
training only. . . ?!



Batch normalisation

I “Internal covariance shift”. . . ?!



Batch normalisation

I Solution: renormalise outputs of the current layer across the
current batch, B = {x1, . . . , xm} (but allow the network to
“revert” if necessary)!

µB =
1
m

m∑
i=1

xi σ2
B = 1

m

m∑
i=1

(xi − µB)2

x̂i =
xi − µB√
σ2
B + ε

yi = γx̂i + β

where γ and β are trainable!
I Now ubiquitously used across deeper networks

I Published in February 2015, ∼ 1500 citations by now!



Traffic sign classification



ImageNet classification



“Simple” navigation



Self-driving cars



“Greatest hits”



Neural style transfer



Video captioning



Playing Atari. . .



. . . and Cooling



Challenge: Multimodal data fusion



Challenge: Unsupervised learning



Challenge: General AI

Input

Output (Task 1) Output (Task 2)



Thank you!

Questions?
petar.velickovic@cst.cam.ac.uk


	Introduction
	Multilayer perceptrons
	Representations
	Conclusion

