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Introduction

I In this talk, I will explore interesting applications of using neural
networks for what they weren’t originally designed to do.

I This will cover the essentials of how neural networks normally
work, with a journey through representation learning. . .

I . . . followed by an overview of several interesting applications:
adversarial examples, neural style transfer and DeepDream. . .

I . . . concluding with an example of how I applied similar
techniques within my research (time permitting).

I Let’s get started!



The three “flavours” of machine learning

I Unsupervised learning

I Supervised learning
(the only kind of learning neural networks can directly do!)

I Reinforcement learning



Unsupervised learning

I The environment gives you unlabelled data—and asks you to
assign useful features/structure to it.

Agent Environment
~x1, ~x2, . . . , ~xnfeatures

I Example: study data from patients suffering from a disease, in
order to discover different (previously unknown) types of it.



Example: Clustering



Reinforcement learning

I You are allowed to perform actions within the environment,
triggering a state change and a reward signal—your objective
is to maximise future rewards.

Agent Environment
ai

si+1, ri

s0

I Example: playing a video game—states correspond to
RAM/framebuffer contents, actions are available key presses
(including NOP), rewards are changes in score.



Example: Atari



Supervised learning

I The environment gives you labelled data (∼ known input/output
pairs)—and asks you to learn the underlying function.

Agent Environment
(~x1, y1), . . . , ( ~xn, yn)

~x ′

y ′

I Example: determining whether a person will be likely to return
their loan, given their credit history (and a set of previous data
on issued loans to other customers).



Motivation: notMNIST

I Which characters do you see? (How did you conclude this?)

I Imagine someone asked you to write a program that
recognises characters from arbitrary glyphs. . .



Intelligent systems

I Although the previous task was likely simple to you, you
(probably) couldn’t turn your thought process into a concise
sequence of instructions for a program!

I Unlike a “dumb” program (that just blindly executes
preprogrammed instructions), you’ve been exposed to a lot of A
characters during your lifetimes, and eventually “learnt” the
complex features making something an A!

I Desire to design such systems (capable of generalising from
past experiences) is the essence of machine learning!

I How many such systems do we know from nature?



Specialisation in the brain

I We know that different parts of the brain perform different tasks:

I There is increasing evidence that the brain:
I Learns from exposure to data;
I Is not preprogrammed!



Brain & data

I The majority of what we know about the brain comes from
studying brain damage:

I Rerouting visual inputs into the auditory region of baby ferrets
makes this region capable of dealing with visual input!

I As far as we know (for now), the modified region works equally
good as the visual cortex of healthy ferrets!

I If there are no major biological differences in learning to
process different kinds of input. . .

I =⇒ the brain likely uses a general learning algorithm, capable
of adapting to a wide spectrum of inputs.

I We’d very much like to capture this algorithm!



A real neuron!



An artificial neuron!

Within this context sometimes also called a perceptron (. . . )
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Popular choices for the activation function σ:
I Identity: σ(x) = x ;
I Rectified linear unit (ReLU): σ(x) = max(0, x);
I Sigmoid functions: σ(x) = 1

1+exp(−x) (logistic); σ(x) = tanh x .



Activation functions
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Common activation functions

Identity
Logistic
Tanh
ReLU



Neural networks and deep learning

I It is easy to extend a single neuron to a neural network—simply
connect outputs of neurons to inputs of other neurons.

I We may do this in two ways:
I Feedforward: the computation graph does not have cycles;
I Recurrent: the computation graph has cycles.

I Typically we organise neural networks in a sequence of layers,
such that a single layer only processes output from the
previous layer. Everything with > 1 hidden layer is “deep”!



Multilayer perceptrons

The most potent feedforward architecture allows for full connectivity
between layers—sometimes also called a multilayer perceptron.
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Deep neural networks
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Quiz: What do we have here?



DeepBlue vs. AlphaGo

I Main idea (roughly) the same: assume that a grandmaster is
only capable of thinking k steps ahead—then generate a
(near-)optimal move when considering k ′ > k steps ahead.

I DeepBlue does this exhaustively, AlphaGo sparsely (discarding
many “highly unlikely” moves).

I One of the key issues: when stopping exploration, how do we
determine the advantage that player 1 has?

DeepBlue: Gather a team of chess experts, and define a function
f : Board → R, to define this advantage.

AlphaGo: Feed the raw state of the board to a deep neural network, and
have it learn the advantage function by itself.

I This highlights an important paradigm shift brought about by
deep learning. . .



Feature engineering

I Historically, machine learning problems were tackled by
defining a set of features to be manually extracted from raw
data, and given as inputs for “shallow” models.

I Many scientists built entire PhDs focusing on features of interest
for just one such problem!

I Generalisability: very small (often zero)!

I With deep learning, the network learns the best features by
itself, directly from raw data!

I For the first time connected researchers from fully distinct areas,
e.g. natural language processing and computer vision.

I =⇒ a person capable of working with deep neural networks
may readily apply their knowledge to create state-of-the-art
models in virtually any domain (assuming a large dataset)!



Representation learning

I As inputs propagate through the layers, the network captures
more complex representations of them.

I It will be extremely valuable for us to be able to reason about
these representations!

I Typically, models that deal with images will tend to have the
best visualisations (and will be the key topic of this talk).

I Therefore, I will provide a brief introduction to these models
(convolutional neural networks). Then we can look into the
kinds of representations they capture. . .



Working with images

I Simple fully-connected neural networks (as described already)
typically fail on high-dimensional datasets (e.g. images).

I Treating each pixel as an independent input. . .
I . . . results in h × w × d new parameters per neuron in the first

hidden layer. . .
I . . . quickly deteriorating as images become larger—requiring

exponentially more data to properly fit those parameters!

I Key idea: downsample the image until it is small enough to be
tackled by such a network!

I Would ideally want to extract some useful features first. . .

I =⇒ exploit spatial structure!



The convolution operator



Enter the convolution operator

I Define a small (e.g. 3× 3) matrix (the kernel, K).

I Overlay it in all possible ways over the input image, I.

I Record sums of elementwise products in a new image.

(I ∗ K)xy =
h∑

i=1

w∑
j=1

Kij · Ix+i−1,y+j−1

I This operator exploits structure—neighbouring pixels influence
one another stronger than ones on opposite corners!

I Start with random kernels—and let the network find the optimal
ones on its own!



Convolution example
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Downsampling (∼ max-pooling)

Convolutions light up when they detect a particular feature in a
region of the image. Therefore, when downsampling, it is a good
idea to preserve maximally activated parts. This is the inspiration
behind the max-pooling operation.

12 20 30 0

8 12 2 0

34 70 37 4

112 100 25 12

20 30

112 37

2× 2 Max-Pool



Stacking convolutions and poolings

Rough rule of thumb: increase the depth (number of convolutions)
as the height and width decrease.

Conv. Pool Conv. Pool

FC

FC

Softmax



CNN representations

Three ways to examine the CNN’s internal representations:
1. Observe the learnt kernels;
2. Pass an input through the network, observe the activations;
3. Coming later in this talk. . .



Observing kernels

I Typically, as the kernels are small, gaining useful information
from them becomes difficult already past the first layer.

I However, the first layer of kernels reveals something
magical. . . In almost all cases, these kernels will learn to
become edge detectors!



Passing data through the network: Input

I3I2I1

O2O1



Passing data through the network: Shallow layer

I3I2I1

O2O1



Passing data through the network: Deep layer

I3I2I1

O2O1



Passing data through the network: Output

I3I2I1

O2O1



Towards a learning algorithm

I I will now prove an important property of the kinds of neural
networks we built so far: differentiability.

I This will lead us to the primary algorithm which will be used for
all the subsequent applications.

I We’ll argue by reviewing the basic operations the network is
doing, and then making an argument by induction (as every
network can be constructed in finitely many such steps).



A single neuron is differentiable
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I The input fed to σ is a linear combination, and therefore trivially
differentiable in ~x , ~w and b.

I σ itself is differentiable! (Except for ReLU at zero, but it’s OK)
I By composition, we may differentiate the neuron’s function with

respect to any parameter.



Connecting neurons is differentiable
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I We compute a linear combination of differentiable functions,
then feed it into a differentiable function—by composition, the
full output is still differentiable with respect to any parameter.

I This works regardless of how we connect (e.g. fully connected,
convolutional, . . . )



Max-pooling is differentiable. . . with a twist

I We can think of max-pooling as a piecewise step function:

pool(~x) =


x1 ∀i 6= 1.x1 > xi

x2 ∀i 6= 2.x2 > xi

. . .

xn ∀i 6= n.xn > xi

I Therefore, for any input ~x we feed, we can differentiate the
pooling operation as well (except perhaps when there is no
unique maximum, but we can introduce tiebreaking. . . ).



Gradient descent

I We have successfully shown that the neural network’s function
h(~x ; ~w) is differentiable both with respect to its inputs ~x and
weights/biases ~w .

I If we now define a differentiable loss function L(~x ; ~w), we can
then train the network to minimise it, using gradient descent.

I At each step, follow the direction of the negative gradient of the
loss function.

I Once we have decided on a neural network architecture, the
loss function is what determines what the network is going to
learn in training!



Gradient descent



(Simple) loss function engineering

I A very simple loss is the squared error: for a given training
example (~xi , yi), minimise the squared error of the network’s
prediction with respect to yi :

L(~w) = (yi − h(~xi ; ~w))2

I A simple example of engineering a more targeted loss function
from there is adding weight decay. Often, large weights are
undesirable (numerically), so penalise them:

L(~w) = (yi − h(~xi ; ~w))2 + λ||~w ||2

I Here, λ represents the tradeoff between fitting the training data
and minimising the weights (careful!).



Change the game

I These losses are only parametrised in the weights (inputs are
fixed to whatever’s in the training set), and therefore are useful
for learning better weights.

I For the purposes of our applications, we are going to change
the game: assume the weights are fixed, and then define loss
functions on the inputs!

I To be able to get nice results out of this, we need nice
pre-trained models. . .



Change the game

I3I2I1

O2O1

I3I2I1

O2O1



ImageNet

I A 1000-class image classification problem, with classes that
are both very diverse (animals, transportation, people. . . ) and
very specific (100 breeds of dogs!).

I A state-of-the-art predictor needs to be very good at extracting
features from virtually any image!

I Early success story of deep learning (2012); human
performance (∼ 94%) surpassed by a 150-layer neural network
in 2015.

I Pre-trained models are readily available in deep learning
libraries (such as Keras, which I will be using for all the demos).



ImageNet classification



VGG-16



Adversarial examples

Our first application seeks to demonstrate how easy it is to
“dethrone” such models with minimal effort.



The adversarial loss function

I A classification model outputs a vector of confidences:
h(~x ; ~w)i = P(~x in class i).

I Define a loss function to make the input maximise any class
confidence you want!

Li
adv (~x) = −h(~x ; ~w)i

I For my demo, I choose the class i = 89, i.e. a sulphur-crested
cockatoo. :)



Totally a sulphur-crested cockatoo



Totally not a sulphur-crested cockatoo

“tusker” (54.96% confidence)



Totally not a sulphur-crested cockatoo (?!)

+ ε× =

“sulphur-crested cockatoo” (99.99% confidence!)



Security implications: facejack

https://github.com/PetarV-/facejack



Don’t even need to mess with the image. . .



Some more scary facts

I Don’t even need full gradients—only their sign suffices!

I Typically, there’s an entire space of adversarial examples
around any particular training example.

I This is because adversarial examples are quite artificial (they
“embed a pattern within an example”), and are hence unlikely to
be found in a training set.

I The examples often exhibit transferability: what’s adversarial
for one model is likely to be adversarial for another.

I Re-training models on adversarial examples is now a
well-known technique for making them more robust.



Neural style transfer

The second application seeks to generate images that preserve
“content” of a base image but capture “style” of a reference image.



The content loss function

I Let Ai(~x ; ~w) be the outputs of the i-th layer in the network.

I Also, let ~xbase be the base image, and ~xref the reference image.

I We previously saw that deeper layers of neural networks are
able to capture content rather well. Therefore it is natural to
enforce content similarity by making the outputs of one of these
layers be “close” for our base image and generated image:

Lcontent (~x) = ||Ai(~x ; ~w)−Ai(~xbase; ~w)||2



The style loss function

I Style is a bit more complicated to capture. We may still make
advantage of the outputs, but:

I Style corresponds less to content; more to correlation between
parts of the content.

I Correlations can be reasonably approximated using a Gram
matrix (an outer product of the features with themselves). For
features x and y of the i-th layer:

Gi (~x ; ~w)xy = Ai (~x ; ~w)xAi (~x ; ~w)y

I Typically we’ll want to match style at multiple scales j .
I Therefore:

Lstyle(~x) =
∑

j

||Gj(~x ; ~w)− Gj(~xref ; ~w)||2



The continuity loss function

I There is another desirable property of the input—we wouldn’t
want the generated image to be too “jumpy” (i.e. changing
colour intensities too much with adjacent pixels).

I Enforce this with a continuity loss:

Lcontinuity (~x) =
n∑

i=1

m∑
j=2

(xij − xi,j−1)2 +
n∑

i=2

m∑
j=1

(xij − xi−1,j)
2



Combining the losses

I Similarly as before:

Lstyletrans(~x) = Lcontent (~x) + αLstyle(~x) + βLcontinuity (~x)

I As usual, correctly choosing α and β is important and requires
quite some experimentation. Different values give different
results, many of which are useless.



Demo time: Trinity!



Demo time: Trinity + Pink Floyd!



Demo time: Trinity + Coldplay!



Demo time: Trinity + Wave!



Further applications

I Aside from its direct use in apps such as Prisma, neural style
transfer has made its way into the music and movie industries.



DeepDream

The third application seeks to provide an alternate way into
visualising feature representations, by capturing what is it that a
neural network will respond highly to (and it just happened to put
images in a bad trip as well).



The dream loss function

I Recall that convolutional layer outputs “light up” (attain higher
values) when the corresponding pattern has been detected.

I Therefore, we should choose some layers, j , in the network,
and aim to maximise the intensity of their output:

Ldream(~x) = −
∑

j

||Aj(~x ; ~w)||2

I The selection of the layers to maximise will depend primarily on
whether we want to focus on lower or higher level feature
representations (or perhaps the combination of them).



The L2 and continuity losses

I One easy way in which this can fail is that the image simply
becomes too bright, maximising everything irrespective of the
features. Include an L2 loss, which penalises bright pixels:

LL2(~x) = ||~x ||2

I Finally, we introduce the continuity loss as before, as continuity
is still desirable:

Lcontinuity (~x) =
n∑

i=1

m∑
j=2

(xij − xi,j−1)2 +
n∑

i=2

m∑
j=1

(xij − xi−1,j)
2



The DeepDream loss

I Similarly as before:

Ldeepdream(~x) = Ldream(~x) + αLL2(~x) + βLcontinuity (~x)

I Same remarks about α and β as usual. In particular, as we
change which layers we want to “excite”, the appropriate values
might change drastically.



Demo time: Tripity!



Demo time: Tripity!



Demo time: Tripity!



Demo time: Tripity!



Demo time: Tripity!



Application of DeepDream to time-series data

I In my recent research work, I have produced recurrent neural
network-based predictors of weight gain/loss.

I This was done based on very incomplete features (sleep, steps
and weight measurements for the past N days), and it’s not
immediately obvious which sleep features are the most critical
for the model’s predictions.

I In order to visualise what the network was detecting the most, I
applied DeepDream starting from a random ten-day sequence
of features, in order to maximise confidence of achieving a
−4kg weight objective.



The key to weight loss: early sleep?
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Thank you!

Questions?
petar.velickovic@cl.cam.ac.uk

For all the demo sources, check out:
https://github.com/PetarV-/deep-lossy-fun
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