
A trip down long short-term memory lane
Petar Veličković

Artificial Intelligence Group
Computer Laboratory, University of Cambridge, UK

Research Students Lecture Series 21 February 2017

Introduction

I In this lecture, I will introduce recurrent neural networks from
essential first concepts.

I This will cover the application of simple RNNs to solve
sequential problems. . .

I . . . followed by a deep sweep through long short-term
memories (LSTMs). . .

I . . . concluding with a variety of modern tips ‘n’ tricks for
deploying LSTMs, along with a neat demo (time permitting).

I Let’s get started!

The three “flavours” of machine learning

I Unsupervised learning

I Supervised learning
(the only kind of learning neural networks can directly do!)

I Reinforcement learning

Supervised learning

I The environment gives you labelled data (∼ known input/output
pairs)—and asks you to learn the underlying function.

Agent Environment
(~x1, y1), . . . , (~xn, yn)

~x ′

y’

I Example: determining whether a person will be likely to return
their loan, given their credit history (and a set of previous data
on issued loans to other customers).

Classification

I Specifically, we will focus on classification—assuming our
outputs to come from a discrete set of classes.

Neural networks

I To make life simpler (esp. notationally!), let’s start with an
introduction to simple neural networks.

I Neural networks are structures of interconnected processing
units (neurons).

I Each neuron computes a linear combination of its inputs,
afterwards potentially applying an activation function, to
produce its output.

I Occasionally, I will illustrate how to specify neural networks of
interest using Keras (keras.io). (highly recommended!)

A single neuron

Within this context sometimes also called a perceptron (. . .)

Σ σ

+1

x1

x2

x3

xn

b
w

1

w2

w3

w n
h(~x ; ~w) = σ

(
b +

n∑
i=1

wixi

)

...

Popular choices for the activation function σ:
I Identity: σ(x) = x ;
I Rectified linear unit (ReLU): σ(x) = max(0, x);
I Sigmoid functions: σ(x) = 1

1+exp(−x) (logistic); σ(x) = tanh x .

Activation functions

−2−1.8−1.6−1.4−1.2−1−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

z

σ
(z
)

Common activation functions

Identity
Logistic
Tanh
ReLU

Neural networks and deep learning

I It is easy to extend a single neuron to a neural network—simply
connect outputs of neurons to inputs of other neurons.

I We may do this in two ways:
I Feedforward: the computation graph does not have cycles;
I Recurrent: the computation graph has cycles.

I Typically we organise neural networks in a sequence of layers,
such that a single layer only processes output from the
previous layer. Everything with > 1 hidden layer is “deep”!

A few details on training

I Neural networks are trained from known (input, output)
samples. The training algorithm adapts the neurons’ weights to
maximise predictive power on the training examples.

I This is done, for a single training example (~x , y), by:
I Computing the output of the network y ′ = h(~x ; ~w);
I Determining the loss of this output L(y , y ′);
I Computing partial derivatives of the loss with respect to each

weight, ∂L
∂~w , and using these to update weights.

I Key words: backpropagation, stochastic gradient descent.

A simple classifier

Let’s ignore the activation functions and “deep learning” for
now. . . here is a simple, shallow, 4-class classifier.

Σ

Σ

Σ

Σ

+1

x1

x2

x3

xn

...

Choose the class which has the maximal output:

C = argmaxj
{

bj +
∑n

i=1 wijxi
}

Block notation

Note that this layer is essentially doing a matrix multiplication. . .

~x W× +~b

C = argmaxj

(
W~x + ~b

)
j

N.B. W of size 4× n, ~b of size 4!

Softmax

I Problem: what should the targets be?

I Outputs are unbounded! For an example of the second class,
the targets should be ~y =

[
−∞ +∞ −∞ −∞

]
. . .

I Solution: transform the outputs monotonically to the [0,1]
range, using the softmax function:

softmax(~z)i =
exp(zi)∑
j exp(zj)

Probabilistic classification

I This conveniently also makes the outputs add up to 1, so we
can interpret y ′i = softmax(h(~x))i = P(~x in class i).

I Now the target for an example of the second class should be
~y =

[
0 1 0 0

]
(∼ one-hot encoding).

I Typically express the loss function as the cross-entropy:

L(~y , ~y ′) =
K∑

i=1

yi log y ′i

where K is the number of classes.

Back in business

Integrating into our simple classifier:

~x W× +~b

so
ftm

ax

C = argmaxj

{
softmax

(
W~x + ~b

)
j

}

Going deeper with LEGOTM

Making things deep is now easy. . .

~x W1× +~b1 W2× +~b2

so
ftm

ax

C = argmaxj

{
softmax

(
W2ReLU

(
W1~x + ~b1

)
+ ~b2

)
j

}
N.B. the ReLU is important! A composition of linear functions is
itself a linear function. . .

Fully connected layers

The “matrix-multiply–bias–activation” (sometimes also called fully
connected or Dense) layer is a common building block of neural
networks.

~x
Dense(7) Dense(4)

softmax

Keras code:
x = Input(shape=(7,))

h = Dense(7, activation=’relu’)(x)

y = Dense(4, activation=’softmax’)(h)

Sequential inputs

I Now, consider a classification problem where the input is
sequential—a sequence consisting of arbitrarily many steps,
wherein at each step we have n features.

~x1 ~x2 ~x3 ~x4 ~x5 . . . ~xt . . .

I The fully connected layers will no longer suffice, as they expect
a fixed-size input!

Making it work

Key ideas:
I Summarize the entire input into m features (describing the

most important patterns for classifying it);

I Exploit relations between adjacent steps—process the input in
a step-by-step manner, iteratively building up the features, ~h:

~ht = f (~xt , ~ht−1)

I If we declare a pattern to be interesting, then it does not matter
when it occurs in the sequence =⇒ employ weight sharing!

An RNN cell

RNN

~xt

~yt

~yt−1

Unrolling the cell. . .

RNN RNN RNN

Compute ~yT iteratively, then feed it into the usual
fully connected network to get the final answer.

. . . RNN

~x1 ~x2 ~x3 ~xT

~yT

~y0

~y1 ~y2 ~y3 ~yT−1

. . .

N.B. Every RNN block has the same parameters!

SimpleRNN

I Initial versions introduced by Jordan (1986), Elman (1990).

I Simply apply a fully-connected layer on both ~xt and ~yt−1, and
add the results together before applying the activation.

SimpleRNN

Dense(m)

Dense(m)

~xt

~yt−1

+ σ ~yt

~yt = σ
(

W~xt + U~yt−1 + ~b
)

N.B. W of size n ×m, U of size m ×m! ~b = ~bx + ~bu.

The “combine” block

This operation (linearly extract m features each out of two
vectors–add them–apply activation) will be a very important building
block for LSTMs—let’s call it the “combine” block.

Combine(m)

σ

~xt

~yt−1

~yt

Let’s look into what we should choose for our SimpleRNN’s σ. . .

SimpleRNN activations

I Identity: not useful (want to model nonlinear problems). . .

I ReLU: should be a natural first choice.
BUT: exploding gradients!

I Sigmoid: tanh preferred to the logistic function (for symmetry).
BUT: vanishing gradients!

A brief intro to gradient descent

I Weights of a neural network are updated in the direction of the
negative gradient of the loss with respect to them:

~wt ← ~wt−1 − η∇L(~w)

where ∇L(~w) =
(
∂L(~w)
∂w1

. . . ∂L(~w)
∂wn

)
I Gradients are computed in an iterative fashion, starting from

output neurons backwards to the inputs, using the chain rule.

A simple example

I Consider a very simple “path” neural network, where each layer
has only one neuron, each computing the same activation σ:

x σ σ σ σ . . .w1 w2 w3 w4 w5

I Although this is a “toy” example, the conclusions will naturally
carry over to wider networks (can be decomposed into many
such paths, over which we “accumulate” gradient updates).

I For a recurrent neural network, these paths can grow at least
as long as the number of steps in the input!

Gradient updates

I Let ai be the i-th neuron’s activation, and zi be its output:

z0 = x , ai = wizi−1, zi = σ(ai)

I Now, consider the partial derivative of the loss function with
respect to w2, by repeatedly applying the chain rule:

∂L(~w)

∂w2
=
∂L(~w)

∂a2

∂a2

∂w2
= σ(a1)

∂L(~w)

∂a3

∂a3

∂z2

∂z2

∂a2

= σ(a1)σ′(a2)w3
∂L(~w)

∂a4

∂a4

∂z3

∂z3

∂a3

= σ(a1)σ′(a2)w3σ
′(a3)w4

∂L(~w)

∂a5

∂a5

∂z4

∂z4

∂a4

= . . . (you see where this is going. . .)

Vanishing gradients

I In general, the gradient with respect to w2 will be:

σ(a1)× σ′(a2)× w3 × σ′(a3)× w4 × σ′(a4)× . . .

I For RNNs applied to very long sequences, this product
includes a lot of σ′s when considering the first RNN block!

I When σ is a sigmoid activation:
I Logistic: σ′(x) = σ(x)(1− σ(x)) =⇒ |σ′(x)| ≤ 0.25.
I tanh: σ′(x) = 1− σ(x)2 =⇒ |σ′(x)| ≤ 1.

I When you multiply many values with magnitudes less than
one. . . the gradient vanishes!

Exploding gradients

I In general, the gradient with respect to w2 will be:

σ(a1)× σ′(a2)× w3 × σ′(a3)× w4 × σ′(a4)× . . .

I ReLUs solve the vanishing gradient problem by having a
derivative of 1 when a neuron is “alive”, and 0 otherwise.

I However, the value of σ(a1) may grow without bound!
I This is not overly troublesome for feedforward networks, but

recurrent networks share weights, so this update is applied
once for each starting position.

I When you add up many updates that may grow without
bound. . . the gradient easily explodes!

Handling exploding gradients

I To make exploding gradients manageable we apply gradient
clipping: making the gradient’s norm no larger than a threshold:

∇L = ∇L ∇max

max(||∇L||,∇max)

I While this is convenient, it will stop important long-term
dependencies from fully coming through—as was the case with
vanishing gradients.

I Handling vanishing gradients leads us to the central theme of
this lecture. . .

Long Short-Term Memory

I Proposed by Hochreiter and Schmidhuber (1997).

I Introduce a memory cell, ~c, which maintains features between
time steps, and explicitly control, based on the ~xt and ~yt−1:

I What proportion of newly computed features enters the cell;
I What proportion of the previously stored cell state is retained;
I What proportion of the new cell contents exits the LSTM.

I This architecture solves the vanishing gradient problem:
I We dynamically learn the rate at which we want the gradient to

vanish, with respect to the current inputs.

An LSTM block

new fts.

input gate

forget gate

output gate

~xt

~yt−1 × + σ × ~yt

×

M

~ct−1

~ct

LSTM

The “new features” block

I Compute the new features based on ~xt and ~yt−1—essentially a
SimpleRNN/“combine” block!

I Since the LSTMs are designed to handle vanishing gradients,
best to use the more stable sigmoid (tanh) as the activation.

Combine(m)
~xt

~yt−1

~ft t

~ft t = tanh
(

Wft~xt + Uft~yt−1 + ~bft

)
I Similarly, we should use tanh as the output activation (σ).

The input/output/forget gates

I Compute the required proportions based on ~xt and ~yt−1—yet
another “combine” block!

I Want a value in the [0, 1] range per feature (0/1–block/pass
completely), so the logistic sigmoid is appropriate here.

Combine(m)
~xt

~yt−1

~it

~it = logistic
(

Wi~xt + Ui~yt−1 + ~bi

)
I (Similarly for ~ot and ~ft . . .)

Putting it all together

~it = logistic
(

Wi~xt + Ui~yt−1 + ~bi

)
~ft = logistic

(
Wf~xt + Uf~yt−1 + ~bf

)
~ot = logistic

(
Wo~xt + Uo~yt−1 + ~bo

)
~ft t = tanh

(
Wft~xt + Uft~yt−1 + ~bft

)
~ct = ~ft t ⊗~it + ~ct−1 ⊗~ft
~yt = tanh

(
~ct
)
⊗ ~ot

gates

new features

update cell
output

Creating deep LSTMs

LSTM1 LSTM1 LSTM1 . . . LSTM1

LSTM2 LSTM2 LSTM2 . . . LSTM2

Use the intermediate outputs to form a new sequence,
~ht , that gets fed into a second LSTM.

~x1 ~x2 ~x3 ~xT

~yT

~h0

~y0

~h1
~h2

~h3
~hT−1

. . .

~h1
~h2

~h3
~hT

~y1 ~y2 ~y3 ~yT−1

Tips ‘n’ Tricks: Initialisation and optimisers

I It is important to choose the initial parameter values to help the
LSTM learn effectively in the early stages!

I Sensible initialisations are (Keras does these automatically):
I U∗ as orthonormal matrices (help combat vanishing gradients

even further; eigenvalues ∼ 1).
I ~bf = ~1 (to encourage long-term dependencies early on);
I Xavier initialisation (Glorot and Bengio (2010)) for all other

weights (recommended for sigmoid activations).

I Gradient descent algorithms that automatically tune the
learning rate are now common—for RNNs, Adam (Kingma and
Ba (2014)) and RMSProp (Tieleman and Hinton (2012)) work
particularly well.

Tips ‘n’ Tricks: Dropout

I Randomly “kill” neurons during training only.
(Srivastava et al. (2014))

dropout ×
×

×

×

×

×

×

I Forces network to not rely on existence of some neuron. . .

Tips ‘n’ Tricks: Dropout in LSTMs

LSTM1 LSTM1 LSTM1 . . . LSTM1

LSTM2 LSTM2 LSTM2 . . . LSTM2

Typically, it is only safe to dropout non-recurrent connections.
(Zaremba et al. (2014))

~x1 ~x2 ~x3 ~xT

~yT

~h0

~y0

× × × ×

×

~h1
~h2

~h3
~hT−1

. . .

×~h1 ×~h2 ×~h3 ×~hT

~y1 ~y2 ~y3 ~yT−1

Tips ‘n’ Tricks: Bidirectional LSTM

I Very often, the dependencies within sequential data are not
just in one direction, but may be observed in both!

I Examples: DNA strands, words in a sentence, . . .

I Bidirectional layers exploit this by combining the features
obtained going in both directions simultaneously.

I Very simple to deploy in Keras (Bidirectional wrapper
around recurrent layers).

Tips ‘n’ Tricks: Bidirectional LSTM in action

. . . LSTM→ LSTM→ LSTM→ LSTM→ . . .

LSTM←LSTM←LSTM←LSTM←.

~x2 ~x3 ~x4 ~x5

~h5~h4
~h3~h2

~h→2 ~h→3 ~h→4

.

~h←3 ~h←4 ~h←5

Demo: The Josef K. LSTM

I Character-level language model: based on the previous n
characters observed in a text, predict the next one.

I Two-layer LSTM (with 512 features in each layer), trained on
Franz Kafka’s The Trial (Der Prozess):
inp = Input(shape=(seq len, vocab len))

h 1 = LSTM(512, return sequences=True)(inp)

h 2 = LSTM(512, dropout W=0.5)(h 1)

out = Dense(vocab len, activation=’softmax’)(h 2)

I Once trained, we can repeatedly sample the obtained
probability distribution to generate our own text, one character
at a time!

Demo: Samples from the Josef K. LSTM. . .

"I’m not sure that’s worrible?" asked K. "Yes," said the

businessman, "and that’s what they could do," said K.,

and was able to make things some place and he would need

to be able to deal with the court which were the old man

with a sigh for in the hallway which was already for him

to de and darkness without being didned the bed. "I’m

sure this court would have been meant to be a little

while to him in the court. They were all asside the

painter and looked at her with some way on his way and

leave. "It’s nothing about your face when I had been

given the first attention foreary, there was a lithle

like that are not the time he remained standing with his

head so far from the bank.

Taking the idea further

I The idea of repeatedly sampling the LSTM output and feeding
it back to the input is a common one. For example, we might
learn a classifier to predict a translation of a given sentence,
word by word.

I Or, if we feed in features extracted from an image (e.g. by
using a convolutional neural network). . .

Neural Talk

I Vinyals et al. (2014), Karpathy and Fei-Fei (2015).

Future prospects. . .

I Although it seems like recurrent networks are the de facto
standard for processing sequential data, this may well change
in the future.

I Feedforward models are significantly easier to train, control
and parallelise (fewer interdependencies).

I Recent work using à trous (dilated) convolutions on machine
translation (Kalchbrenner et al. (2016)) and WaveNets (van
den Oord et al. (2016)) outperforms or matches recurrent
models in domains where they historically dominated.

Regular 1× 3 convolution in 1D (Convolution1D)

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 1
0

I 1
1

I 1
2

I 1
3

I 1
4

I 1
5

I 1
6

O
1

O
2

O
3

O
4

O
5

O
6

O
7

O
8

O
9

O
10

O
11

O
12

O
13

O
14

O
15

O
16

À trous convolutions in 1D (AtrousConvolution1D)

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 1
0

I 1
1

I 1
2

I 1
3

I 1
4

I 1
5

I 1
6

O
1

O
2

O
3

O
4

O
5

O
6

O
7

O
8

O
9

O
10

O
11

O
12

O
13

O
14

O
15

O
16

Temporal dependencies captured by O16

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 1
0

I 1
1

I 1
2

I 1
3

I 1
4

I 1
5

I 1
6

O
1

O
2

O
3

O
4

O
5

O
6

O
7

O
8

O
9

O
10

O
11

O
12

O
13

O
14

O
15

O
16

Thank you!

Questions?
petar.velickovic@cl.cam.ac.uk

https://github.com/PetarV-/a-trip-down-lstm-lane

	Introduction
	Simple NN classifiers
	SimpleRNN
	LSTM

