
Neural Relational Inference
for Interacting Systems
Petar Veličković

Artificial Intelligence Group
Department of Computer Science and Technology, University of Cambridge, UK

MILA Graph Representation Reading Group Meeting 25 July 2018

Introduction

I In this talk, I will survey the recently published Neural
Relational Inference model (Kipf, Fetaya et al., ICML 2018).

I This model enables the discovery and exploitation of
latent interactions between objects, through the synergy of
graph convolutional networks and variational autoencoders.

I Exciting results + avenues for further work!

Graphs are everywhere!

. . . but can we always see them?

Relational inference

I Virtually all graph convolutional techniques require a graph to
be provided as input!

I However, often we will only have access to node features. . .

I Approaches such as Relational Networks (Santoro et al.,
2017), or VAIN (Hoshen, 2017) circumvent this by assuming a
complete graph (i.e. all-pairs interactions).

I But most interaction graphs have properties (such as sparsity)
that we may wish to explicitly demand!

I Furthermore, we may wish to identify and decouple different
types of interaction.

Our task for today

Motivation: predicting trajectories

I Input: Trajectories (e.g. coordinates) ~x≤t
i for each particle i .

I Output: Future trajectories ~x>t
i for each particle i .

I The interaction graph between particles will be a byproduct!

Simple baseline #1: RNN

I Let ~x t denote the coordinates of all particles at time t :

~x t =
[
~x t

1, ~x
t
2, . . . , ~x

t
n
]

I We can now define a recurrent neural network (e.g. LSTM or
GRU) to operate on this sequential input:

~ht = RNN(~ht−1, ~x t)

I From its hidden states, we can predict the future timesteps:

~x t+1 = f (~ht+1)

where f is an MLP.

Graph convolutional network

In a nutshell, obtain higher-level representations of a node i by
leveraging its neighbourhood, Ni !

~h`+1
i = g`(~h`

a,
~h`

b,
~h`

c , . . .) (a,b, c, · · · ∈ Ni)

where g` is the `-th graph convolutional layer.

Graph convolutional network

In a nutshell, obtain higher-level representations of a node i by
leveraging its neighbourhood, Ni !

~h`+1
i = g`(~h`

a,
~h`

b,
~h`

c , . . .) (a,b, c, · · · ∈ Ni)

where g` is the `-th graph convolutional layer.

The MPNN framework

I The NRI model leverages a graph convolutional layer inspired
by message-passing neural networks (Gilmer et al., 2017).

I First, compute edge messages, ~h`
i→j , for each edge i → j in the

graph. Apply a simple MLP, f `e , over the features of i and j :

~h`
i→j = f `e(~h

`
i ,
~h`

j)

I Then, aggregate all messages entering a node j to obtain the
next-level features, ~h`+1

j . Apply a simple MLP, f `v , over the
summed messages.

~h`+1
j = f `v

∑
j∈Ni

~h`
i→j

The MPNN framework

I The NRI model leverages a graph convolutional layer inspired
by message-passing neural networks (Gilmer et al., 2017).

I First, compute edge messages, ~h`
i→j , for each edge i → j in the

graph. Apply a simple MLP, f `e , over the features of i and j :

~h`
i→j = f `e(~h

`
i ,
~h`

j)

I Then, aggregate all messages entering a node j to obtain the
next-level features, ~h`+1

j . Apply a simple MLP, f `v , over the
summed messages.

~h`+1
j = f `v

∑
j∈Ni

~h`
i→j

The MPNN framework

I The NRI model leverages a graph convolutional layer inspired
by message-passing neural networks (Gilmer et al., 2017).

I First, compute edge messages, ~h`
i→j , for each edge i → j in the

graph. Apply a simple MLP, f `e , over the features of i and j :

~h`
i→j = f `e(~h

`
i ,
~h`

j)

I Then, aggregate all messages entering a node j to obtain the
next-level features, ~h`+1

j . Apply a simple MLP, f `v , over the
summed messages.

~h`+1
j = f `v

∑
j∈Ni

~h`
i→j

MPNN: initial setup

~h`
1

~h`
2

~h`
3

~h`
4

~h`
5

~h`
6

MPNN, computing messages

~h`
1

~h`
2

~h`
3

~h`
4

~h`
5

~h`
6

~h`
3

~h`
4

f `e

~h`
3→4

MPNN, aggregating messages

~h`
1

~h`
2

~h`
3

∑

~h`
5

~h`
6

~h`
2→4

~h`
3→4 ~h`

5→4

~h`
6→4

~h`
3

~h`
4

f `e

~h`
3→4

MPNN, computing node features

~h`
1

~h`
2

~h`
3

∑

~h`
5

~h`
6

~h`
2→4

~h`
3→4 ~h`

5→4

~h`
6→4

~h`
3

~h`
4

f `e

~h`
3→4

f `v ~h`+1
4

MPNN, next-level features

~h`
1

~h`
2

~h`
3

~h`+1
4

~h`
5

~h`
6

~h`
2→4

~h`
3→4 ~h`

5→4

~h`
6→4

~h`
3

~h`
4

f `e

~h`
3→4

f `v ~h`+1
4

Simple baseline #2: Complete graph

I As another baseline approach, we may use this kind of layer to
predict trajectories using a complete graph (assume all pairs of
nodes interact).

I The equations of the baseline become equivalent to:

~ht
i→j = fe(~x t

i , ~x
t
j)

~x t+1
j = fv

∑
i 6=j

~ht
i→j

with a few kinks, specific to the trajectory predicting task. . .

Simple baseline #2: Complete graph

I First, to simplify the job of the network, have it only predict
changes in position:

~ht
i→j = fe(~x t

i , ~x
t
j)

~x t+1
j = ~x t

j + fv

∑
i 6=j

~ht
i→j

Simple baseline #2: Complete graph

I Also, explicitly model uncertainty; will be useful for the
variational framework later on.

~ht
i→j = fe(~x t

i , ~x
t
j)

~µt+1
j = ~x t

j + fv

∑
i 6=j

~ht
i→j

~x t+1

j ∼ N (~µt+1
j , σ2I)

Simple baseline #2: Complete graph, with GRU

I The model thus far assumed the Markov property (i.e. that ~x t+1

depends fully on ~x t). This is OK for physics, but if necessary,
we can alleviate the constraint by using a recurrent update:

~ht
i→j = fe(~x t

i , ~x
t
j)

~ht+1
j = GRU

~x t
j ,
∑
i 6=j

~ht
i→j

 , ~ht
j

~µt+1

j = ~x t
j + fv

(
~ht+1

j

)
~x t+1

j ∼ N (~µt+1
j , σ2I)

Interaction graph

I This baseline can be improved if we specify an explicit
interaction graph. Initially, assume there are K edge types (with
one type reserved for “no edge”).

I Then, define a binary tensor z ∈ RV×V×K such that zijk denotes
whether the edge i → j is of the k -th type.

I Assume an edge cannot have more than one type, i.e., ~zij is
one-hot.

Leveraging the interaction graph

I Now this graph can be exploited—define a separate MLP f k
e for

each edge type. For the Markov decoder:

~ht
i→j = fe(~x t

i , ~x
t
j)

~µt+1
j = ~x t

j + fv

∑
i 6=j

~ht
i→j

~x t+1

j ∼ N (~µt+1
j , σ2I)

The NRI decoder

I Now this graph can be exploited—define a separate MLP f k
e for

each edge type. For the Markov decoder:

~ht
i→j =

∑
k

zijk f k
e (~x

t
i , ~x

t
j)

~µt+1
j = ~x t

j + fv

∑
i 6=j

~ht
i→j

~x t+1

j ∼ N (~µt+1
j , σ2I)

The NRI decoder

~x t
1

~x t
2

~x t
3

~x t
4

~x t
5

~x t
6

The NRI decoder, computing messages. . .

~x t
1

~x t
2

~x t
3

~x t
4

~x t
5

~x t
6

~ht
3→4

~ht
6→4

The NRI decoder, computing messages. . .

~x t
1

~x t
2

~x t
3

~x t
4

~x t
5

~x t
6

~ht
2→4

~ht
3→4 ~ht

5→4

~ht
6→4

The NRI decoder, computing messages. . .

~x t
1

~x t
2

~x t
3

~µt+1
4

~x t
5

~x t
6

~ht
2→4

~h6
3→4 ~ht

5→4

~ht
6→4

~ht
1→4

Latent graph inference

I We are still tasked with discovering the entries of the tensor z.

I Idea: Use MPNNs over a complete graph once more—then
classify edge types based on the edge messages ~hi→j .

I This time, stack two layers—so that edges can be derived
based on global interactions!

I ~h1
i→j will only depend on ~xi and ~xj ;

I ~h2
i→j will depend on all the nodes in the graph.

The NRI encoder

I In equation form:

~h1
j = f (~xj)

~h1
i→j = f 1

e (
~h1

i ,
~h1

j)

~h2
j = f 1

v

∑
i 6=j

~h1
i→j

~h2

i→j = f 2
e (
~h2

i ,
~h2

j)

zij ∼ Categorical(softmax(~h2
i→j))

where f is an embedding, and f 1
e , f 1

v and f 2
e are MLPs.

The variational setup

I The encoder gives us the probability distribution q(z|~x), and
the decoder gives us the probability distribution p(~x |z).

I Combine learning the two in a VAE-style framework by
maximising the evidence lower bound (ELBO):

L = Ez∼q(z|~x)[log p(~x |z)]︸ ︷︷ ︸
Reconstruction accuracy

−DKL(q(z|~x)‖p(z))︸ ︷︷ ︸
Regularisation

I The prior p(z) can encode desirable properties of the latent
graph. Sparsity is enforced by setting the probability of “no
edge” to be higher than the other types.

Backpropagating through the sampling

I The operation of selecting zij is a discrete decision—therefore,
we cannot directly propagate gradients through it.

I Can use the Gumbel softmax trick to circumvent this:

~zij = softmax((~h2
i→j + ~g)/τ)

where gk ∼ Gumbel(0,1) and τ is a temperature parameter
(converges to one-hot when τ → 0).

I This is a continuous approximation to the discrete
distribution—and gradients can be propagated through it.

Avoiding degenerate decoders

I Optimising the ELBO directly would involve only single-step
predictions (predicting ~x t+1 from ~x t). This can often be nicely
approximated by ignoring relational structure altogether!

I To enforce robust decoders, predict many steps at once! Every
M steps, feed back the ground-truth input.

Avoiding degenerate decoders, cont’d

~µ2
j = decode(~x1

j)

~µ3
j = decode(~µ2

j)

~µ4
j = decode(~µ3

j)

...

~µM+1
j = decode(~µM

j)

~µM+2
j = decode(~xM+1

j)

~µM+3
j = decode(~µM+2

j)

...

Putting it all together

For a given training trajectory, ~x , of length T :
1. Compute q(z|~x) using the encoder.
2. Sample ~zij from q(z|~x) using the Gumbel softmax trick.
3. Execute the decoder to obtain ~µt for t ∈ {2,3, . . . ,T}.
4. Compute the reconstruction error (of ~µt against ~x t) and

KL-divergence (of q(z|~x) against the prior p(z)).
5. Optimise the ELBO using gradient descent.

The NRI architecture

x xt Δxt

…
Σ

…

Encoder

Σ

Decoder

…

q φ(z|x)

…

v →e

Legend: : Node emb. : Edge emb. : Concrete distribution: MLP : Sampling

e →v v →e v →e e →v

Physics simulations: latent graph discovery

Physics simulations: trajectory prediction

It might seem as if the LSTM outperforms the NRI on Kuramoto!
Qualitative analysis may show otherwise. . .

Physics simulations: qualitative results

Physics simulations: qualitative results

Motion capture

The graph is now dynamic! Re-evaluate at every decoding step.

Motion capture: trajectory prediction

Motion capture: qualitative results

t = 0 t = 10 t = 20 t = 30

pr
ed

ic
tio

n
tru

th

Motion capture: qualitative results
pr

ed
ic

tio
n

tru
th

t = 0 t = 10 t = 20 t = 30

Concluding remarks

I The NRI is an extremely versatile model for inferring latent
interaction graphs from pointwise trajectories.

I Latent graph discovery is still in its early phases of
development—plentiful improvements possible!

I Limitation: does not scale to large graphs! O(V 2) memory
requirements, and computing edge messages makes
subsampling cumbersome.

I Should not be required—most real-world graphs are sparse!
But techniques we have thus far need to start with complete
graph, and gradually discover sparsity. . .

Thank you!

Questions?
petar.velickovic@cst.cam.ac.uk

http://www.cst.cam.ac.uk/∼pv273/

	Introduction

