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Introduction

» In this talk, | will survey the Relational Network architecture,
and its recent deployment in recurrent neural networks and
deep reinforcement learning.

» The discussion will span the following papers:
» A simple neural network module for relational reasoning
(Santoro, Raposo et al., NIPS 2017)
» Relational deep reinforcement learning
(Zambaldi, Raposo, Santoro et al., 2018)
» Relational recurrent neural networks
(Santoro, Faulkner, Raposo et al., 2018)

» Substantial part of DeepMind’s recent “graph networks surge”.
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Relational reasoning

» Being able to reason about relations between entities present
in an input is an important aspect of intelligence!

» Consider the simple task of inferring which two points from a
given point set are furthest apart—this requires computing and
comparing all* of their pairwise distances.

» Keep this task in mind—it will be revisited!
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Approaches to relational reasoning

» Relations can be naturally expressed within symbolic methods
(defined by e.g. the rules of logic)—but these are not robust to
small variations of inputs/tasks.

» Robustness is often achievable with standard neural network
architectures (such as MLPs), but it is extremely challenging
for them to capture relations, despite their theoretical potency!

» This claim is extensively validated throughout the three papers.

= Seek a model inspired by symbolic Al, while empowered by
neural networks (explicitly represent relations in a robust way).
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Our task for today
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The Relational Network
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Relational Networks

» Initially, we will assume that the objects are provided as input.

» Consider a set of n objects, O = {61, 0o, ..., On}; with each
object represented by a feature vector 6; ¢ R™.

» A Relational Network (RN) summarises the relations between
these objects as follows:

RN(O) = f¢ (Z [o/] (5,', 51))
i

where gy : R™ x R™ — R¥ and f,, : R¥ — R/ are functions with
parameters 6 and ¢ (usually MLPs).
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Properties of RNs

» The central component of RNs is gy; the relation function. lis
role is to infer the nature of relations between objects i and j.

» An RN may be seen as a message-passing neural network
over the complete graph of object nodes.

» RNs have several highly desirable properties:

» Relational inference—given the all-pairs nature of the
computation, the module does not assume upfront knowledge of
which pairs of objects are related, and how.

» Data efficiency—an MLP would need to learn and embed n?
(identical) functions to replicate behaviour of RNs.

» Permutation invariance—the summation operation ensures
that the order of objects does not matter; therefore RNs can be
applied to arbitrary sets.
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Dynamic physical systems

MudJoCo-simulated physical mass-spring systems with 10 objects.

Input: ¢; is RGB color and (x, y) coordinates across 16 time steps.
Tasks: (i) infer relations; (ii) count number of systems (harder!).
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Results on physical systems

» Relational Networks achieve 93% accuracy in predicting the
existence/absence of relations between objects, and 95%
accuracy in predicting the number of interacting systems.

» MLPs fail to predict better than chance on either task!

» Learnt function fransferable to unseen motion capture data!
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Conditioning in RNs
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RN conditioning

» An RN may be seen as a module that “captures” the relations
between objects in a set—this computation may be arbitrarily
conditioned, e.g. to answer a specific relational query.

» Assuming we have a conditioning vector g, the RN architecture
may be trivially modified to include it:

RN(0, §) = f, (Z 9 (61, 6, 57))

iJ
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The CLEVR dataset (Johnson et al., 2017)

Question Answering dataset on 3D-rendered objects.

. Non-relational question:
Original Image: a

What is the size of
the brown sphere?

Relational question:

Are there any rubber
things that have the
same size as the yellow
metallic cylinder?

Input: 6; is RGB color, (x, y, z) coordinates, shape/material/size.
Queries: count, exist, compare numbers, query attribute,
compare attribute.
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Results on CLEVR

v

The query sentence is encoded into g as the last-stage output
of a word-level LSTM (with learned word embeddings).

v

Relational Networks achieve an accuracy of 96.4% on CLEVR.

v

Human performance is 92.6%! This sounds great!
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Results on CLEVR

v

The query sentence is encoded into g as the last-stage output
of a word-level LSTM (with learned word embeddings).

v

Relational Networks achieve an accuracy of 96.4% on CLEVR.

v

Human performance is 92.6%! This sounds great!
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The actual CLEVR dataset (Johnson et al., 2017)

Visual Question Answering dataset on 3D-rendered objects.

. Non-relational question:
Original Image: a

What is the size of
the brown sphere?

Relational question:

Are there any rubber
things that have the
same size as the yellow
metallic cylinder?

Input: The scene image. The o; vectors are not explicitly given!
Queries: count, exist, compare numbers, query attribute,
compare attribute.
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Object extraction
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Object extraction from images

In general, we should not assume the o; will be given!

v

v

Arguably, obtaining the o; from raw input will be the most
variable pipeline component.

Often, we can obtain object representations as high-level
outputs of neural networks specialised for such inputs.

v

v

In the case of images (most common!) this will be a
convolutional neural network.
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CNN object extraction

» A convolutional architecture generally consists of interleaving
convolutional and pooling layers—progressively building more
sophisticated feature maps.

» At any point during a CNN, a feature map f may have the
shape n x m x k, where n and m are the height and width of
the feature map, and each pixel is represented by k features.

» Each pixel represents a summary of a certain region of the
image. Without any further assumptions, it is safest to let each
pixel constitute an object!

» Therefore, we will have an object set O = {0y, ... Op.;m} With
n - m objects and 6; € R¥ that will correspond to fxy.
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CNN object extraction

Conv. Pool Conv.

input i f
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Overall CLEVR architecture

Final CNN feature maps RN
| |

I

Object pair

with question  Jo-MLP

object

Conv.

Element-wise

sum
What size is the cylinder
that is left of the brown

metal thing that is left
of the big sphere?
|—> what size is ... sphere

LST™M

End-to-end trainable with gradient descent.
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Actual results on CLEVR

. Compare uer Compare
Model Overall Count Exist Numﬁers Agribgte Attriiute
Human 92.6 86.7 96.6 86.5 95.0 96.0
Q-type baseline 41.8 34.6 50.2 51.0 36.0 51.3
LSTM 46.8 41.7 61.1 69.8 36.8 51.8
CNN+LSTM 52.3 43.7 65.2 67.1 49.3 53.0
CNN+LSTM+SA 68.5 52.2 71.1 73.5 85.3 52.3
CNN+LSTM~+SA* 76.6 64.4 82.7 7.4 82.6 75.4
CNN+LSTM+RN 95.5 90.1 97.8 93.6 97.9 97.1

First approach to achieve superhuman performance on this task!
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Actual results on CLEVR

compare numbers

1.0
> 3 Human
@ 0.75 1 CNN+LSTM+RN
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g 0.25 = CNN+LSTM
0.0 [ LSTM
overall count i less equal =1 Q-type baseline
than
query attribute compare attribute
10 T 1 T 1
3 0.75
o
3 0.5
&) 0.25
0.0
query query query query compare compare compare compare
size shape material color size shape material color

Especially excels at compare attribute, the query type which
heavily relies on relational reasoning.
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Failure cases on CLEVR

‘What shape is the small object What number of things are either tiny ‘What number of objects are blocks
that is in front of the yellow matte green rubber objects or shiny things that are in front of the large
thing and behind the gray sphere? that are behind the big metal block? red cube or green balls?

RN: cylinder 1 2
GT: cube 2 3

Failure inputs are often occurring under heavy
occlusion—challenging for humans as well!
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Results on Sort-of-CLEVR

A simple CLEVR-inspired dataset with clear separation of relational
vs. non-relational queries.

. Non-relational question - 1.0 [ CNN+RN
. Q: What is the shape of the gray object? § 0.8 B CNN+MLP
. A: circle °
. o 0.6
Relational question S 04
D. Q: What is the shape of the object © 0.2
that is furthest from the gray object? E .
Image A: square 0.0
Non-Rel.  Rel.

Demonstrates clear advantage of RNs on relational queries.
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LSTM object extraction: bAbl (Weston et al., 2015)

A text-based set of 20 question-answering tasks.

Task 1: Single Supporting Fact
Mary went to the bathroom.
John moved to the hallway.
Mary travelled to the office
Where is Mary? A:office

Task 2: Two Supporting Facts
John is in the playground.
John picked up the football.
Bob went to the kitchen.
Where is the football? A:playground

Let O = {04, ..., 020} be the LSTM representations of up to 20
sentences preceding the question. g is once again obtained as the
LSTM representation of the question.

= UNIVERSITY OF

CAMBRIDGE




Results on bAbI

» RN(O, q) passes (95+% accuracy) 18/20 tasks after joint
training—comparable with other state-of-the-art memory
network architectures.

» Memory networks: 14/20
» DNC: 18/20

» Sparse DNC: 19/20

» EntNet: 16/20

» Does not catastrophically fail (91.9% and 83.5% accuracy) on
the remaining two.

» Notably, it succeeds on the basic induction task (97.9%), where
Sparse DNC (46%), DNC (44.9%) and EntNet (47.9%) all fail.
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Self-attention

» Thus far, the building block functions of a Relational Network
(f5, 9p) were simple MLPs.

» For more recent RN architectures, we focus instead on the
self-attention operator.

» A self-attentional operator, Ay, acts on a set of n entities,
& = {84, 6y,...,8p}, producing higher-level representations:

£ =Ay(€)

where & = {8}, 8),...,6,}, and 6 are learnable parameters.
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Self-attention, contd

» Each component of € will be derived by examining all
components of £ (by way of linear combinations):

& = ajfy(8)
j

where f, : R™ — Rk is a learnable transformation.

» Here, the coefficients «;; correspond to the importance of the
features of entity j to entity /, and are derived by a learnable
attention mechanism, as : R™ x R™ — R:

aj = ay(&;, €))
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Self-attention
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The Transformer architecture

» In particular, the Transformer architecture (Vaswani et al.,
2017) is used for Ay.

» Here abbreviated as MHDPA (multi-head dot-product attention).
» First, derive queries, keys and values for the attention:

G=We8 k=W V=W,
» Now, use the queries and keys to derive coefficients:
exp ((d, K))/v/dk )
> mexp (@, km) /0 )

where dj is the dimensionality of the keys.

aj
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The Transformer architecture, contd

» Now, can use «a;; to recombine the values at each position:
& =)
i
» Can be conveniently written in matrix form as:

~ QK’
& = softmax () Vv
V 0k

» Further optimised by using multi-head attention; replicating
this operation K times (each with independent parameters Wy,
Wy, W,) and featurewise-concatenating the results.
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Reinforcement learning: Box-World and StarCraft Il

Box-World: A grid RL environment meant to stress relational
reasoning while deciding how to act.
StarCraft Il: Mini-games (Vinyals et al., 2017).

Box-World StarCraft Il mini-game StarCraft Il mini-game
Agent  Key Lock Collect Mineral Shards Build Marines

- Buildings - *
- -
Minerals

Loose
key

Minerals

In both cases, agent receives pixel-structured inputs (minimaps,
screens, etc.).
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Relational deep reinforcement learning

v

Empowers a standard CNN-based policy network (in an RL
setting) with a relational module based on self-attention.

» Architectures for both tasks are very similar!

» Extract entities, &;, just as before (as separate pixels in a
high-level feature map).

» Then perform several rounds of the Transformer self-attention
over & (each round followed by a small MLP, fy, and layer
normalisation to introduce nonlinearity).

» Finally, perform global pooling and a small MLP to derive the
policy for the RL algorithm (IMPALA (Espeholt et al., 2018)).
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The Box-World architecture

Feature-wise |
max pooling

Relational
module

X2

Multi-head dot product attention

Input u
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Results on Box-World

Observation Underlying graph 1.0,

0.6

0.4

— Relational (1 block)
— Relational (2 blocks)
— Baseline (3 blocks)
— Baseline (6 blocks)

0.24

Branch length = 1
Fraction solved

o o

i 'l

0 2 4 6 8 10 12 14
Environment steps 1e8

Branch length =3
Fraction solved
o o
2 ¢ ¢ :
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Visualising the attentional coefficients

a)  Underlying graph

b) Entity 2 Entity 3 Entity 4 Entity 5

Attention
head 1

Attention
head 2
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Zero-shot experiments in Box-World

a) Longer solution path lengths b) Withheld key
_\ ,Notrequired
\ during training
Relational Baseline Relational Baseline
1.0 1.0
B 08 B 08
= =
3 06 3 06
c c
S 04 S 04
8 8
£ 0.2 £ 0.2
0.0 0.0
Q& Q& O O
«@\0574 6 8 10 «&\(\574 6 8 105 &@ «09\ &,\q} «09‘

Test  Test

The non-relational baseline (ResNet CNN) fails to generalise!
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Results on StarCraft Il

Mini-game

Agent O 6 0 6 © O

DeepMind Human Player [15] 26 133 46 41 729 6880 138
StarCraft Grandmaster [15] 28 177 61 215 727 7566 133
Random Policy [15] 1 17 4 1 23 12 <1
FullyConv LSTM [15] 26 104 44 98 96 3351 6

PBT-A3C [33] - 101 50 132 125 3345 0

Relational agent 27 1961 621 3031 7367 4906 123
Control agent 27 1871 61 295 1 602 5055 120

Table 1: Mean scores achieved in the StarCraft II mini-games using full action set. 1 denotes a score
that is higher than a StarCraft Grandmaster. Mini-games: (1) Move To Beacon, (2) Collect Mineral
Shards, (3) Find And Defeat Zerglings, (4) Defeat Roaches, (5) Defeat Zerglings And Banelings, (6)
Collect Minerals And Gas, (7) Build Marines.

Sets new state-of-the-art, often beating human grandmaster.
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Zero-shot experiments in StarCraft

200+
mmm Relational
mmm Control

Mean score

1 marine 2 marines 3 marines 4 marines 5 marines 10 marines

Exhibits higher—although not fully conclusive—generalisation
ability from 2 marines to higher numbers.
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Neural networks for sequential processing

» Finally, we turn our attention to architectures used for general
sequential processing of data.

» In the general setting, we require a stateful system, Sy, capable
of processing incoming inputs X;, and updating its internal
state, S;, appropriately:

St = Sp(Xt, St—1)

» Inference may then be performed by leveraging s;.
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Approaches to sequential processing

» Traditional approaches for modelling Sy include recurrent
neural networks (e.g. LSTM, GRU, etc.) and
memory-augmented neural networks (e.g. NTM, DNC, etc.)

» Recurrent neural networks generally represent their state as a
fixed-size vector, ¢;, which gets appropriately updated at each
stage of input processing.

» Memory-augmented networks have a memory matrix,
M e R™M which may be read from/written to by using a
recurrent controller.
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Analysis of approaches

» Both approaches have shortcomings when explicit relational
reasoning through time is required:

» RNNSs pack entire representation in a single dense vector,
making it hard to reason about entities (and therefore relations);

» Memory-augmented networks explicitly represent entities (as
rows of M), but these cannot easily interact once written to.

» Relational recurrent neural networks address both
shortcomings simultaneously, explicitly allowing rows of M to
interact using self-attention!
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Relational memory

» Assume we have a memory matrix M = {my, Mo, ..., Mp}.

» Applying (Transformer) self-attention to it, we obtain a new
memory state M = {m,, m,, ..., m,}, explicitly taking into
account the relations between memory rows mj:

—~ QK’
M = softmax <> \'
Vdk

where
Q =MW, K= MW, V=MW,

just as before.
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Incorporating new inputs

» The interactions thus far are self-contained to what's already in
the memory; however, we’'d like the memory to adapt to
incoming inputs, X, appropriately.

» Simple extension: let the memory locations attend over X too!

QK[ Wcx]"
Vdk

where || denotes row-concatenation.

M = softmax < > [V|[W,X]
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The LSTM controller

» We do not wish to fully overwrite M by M—can control this
process with an LSTM:

o= o0 (W% 4+ Uihiq + 5/)

(
o (Wf)?t + Uk g+ 5f)
Oit=o0 (Wo)?t +Uohj 1 + EO)

Mt = gy (M 11‘)®’lt‘|‘m/t 1 ®f/z
hi,l‘ = tanh (m,-J) © O,'JL

where g, is a learnable function (2-layer MLP with layer
normalisation in the paper).
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The Relational RNN

Output MULTI-HEAD DOT PRODUCT ATTENTION
CORE
w query qi
e0cc0e Viveooeee
eeccee W key k Updated
Prev. J»A—l{a[ MLP Memory— || & o ., 2000 ves " "Memory
Memory -+ Residual Residual Wy
1 Next XXX value v; oooo
)" Memory Input-»L 600000 00000
, Apply gating v sottmax(QKT)V
Input ***computation of gates not depicted

(a)

Compute attention weights

(b)

Normalize weights with row-wise softmax Compute weighted average of values Return updated memory

Queries

Keys W2 ‘Weights Normalized Weights Weights Values Updated Memory
o@e oo o0e@ o ooo[ooon YT Y Y]
|k, @00 0O}—>00 ® ] ~ ooo000
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QK softmax(QK")  softmax(QK )@ B M s
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Tasks under consideration

A suite of supervised and reinforcement learning tasks demanding
explicit sequential relational reasoning.

Key  Lock

What s the N/ farthest from vector m?

Super Mario Land is a 1989 side

x = 339 « v
for [19]: scrolling platform video
x += 597 It had 24 step programming Loose Key Viewport
for[9a]: abilities, which meant it was highly
x += 875
x if 428 < 778 else 652 Agold dollar had been proposed several
print (x) times in the 1830s and 1840s , but was
not initially
Gem Agent
Nth farthest Program Evaluation Language Modeling BoxWorld Mini-Pacman
Supervised Learning Reinforcement Learning

N-th farthest vector from a given vector;

Program evaluation from characters (Learning to Execute);
Language modelling;

Mini-PacMan and Box-World with viewport!

vV v v Y
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Results on N-th farthest: LSTM/DNC

1.0 1.0
best runs best runs
-1 — 10
0.8 —3 0.8 —1
—2 — 1
—_—a — 6
3 0.6 4 5 3 0.6 3
© ©
° jd
3 =1
I~ v
S04 O 0.4
© o
TR A AN TR AT S R e L N AR A R T S AR AN TR
0.2 0.2 )[ T
0.0 T T T T 0.0 44 T T T T
0 10 20 30 40 0 10 20 30 40
timestamp timestamp
LST™M DNC

Failing to surpass 30% batch accuracy!
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Results on N-th farthest: RRNN

params/num_heads

1
8

accuracy
accuracy

0.0 r
10 20 30 40
timestamp
1.0
params/leaming_rate params/gate_style
8e-05 - unit
0.8 4 - 0.0001 = memory
306 9
g e
3 3
S04 S
© ©
0.2
0.0 T T T T
10 20 30 40
timestamp timestamp
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Attention weight visualisation

attention weights

attending t°Q\§ time 00 02 04 0.6 0.8 1.0
g 01234567 &S C —
L | | u u | J | L]
& - X LI i R I ] . n -
~
Dom | i | =H [ ] | ]
- | | | | | | | ] | ||
T » | | | By | || | | |
c o 0 | | | | | | | | | |
g ~ | ] | | | | ] |
© Input Vector Id  (a) Reference vector is the last in a sequence, e.g. "Choose the 5th furthest vector from vector 7"
o . . I - o - — -
I | | | | | | | | | | | | | | | |
| | | | | | |
| | |
| | | | |
|| | |
| | |
| N | | | | | | | | | | |
(b) Reference vector is the first in a sequence, e.g. "Choose the 3rd furthest vector from vector 4"
| [ e | [ ] [ | | B} | B | | B |
N | | | |
| | | | | | | | | | | |
| | | | | | | |
| | | | | | | | | | | | | |
0 d IR B
] n L |

(c) Reference vector comes in the middle of a sequence, e.g. "Choose the 6th furthest vector from vector 6"
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Results on LTE

Table 1: Test per character Accuracy on Program Evaluation and Memorization tasks.

Model Add Control Program Copy Reverse Double
LSTM [3,37] 99.8 97.4 66.1 99.8 99.7 99.7
EntNet [38] 98.4 98.0 73.4 91.8 100.0 62.3
DNC [5] 99.4 83.8 69.5 100.0  100.0 100.0

Relational Memory Core  99.9  99.6 79.0 100.0  100.0 99.8

The RRNN is again highly competitive, especially in scenarios
where strong relational reasoning may be required (full programs).
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Results on LTE

LTE Program Evaluation: Full Program
nesting = 2, length = 5

>
9
e
5
I+
I~
®
00 02 04 06 08 10
iteration 1e5
LTE Program Evaluation: Full Program
nesting = 3, length = 6
>
9
e
5
2
I~
®

accuracy

LTE Program Evaluation: Control

LTE Program Evaluation:
nesting = 2, length = 5

Addition
nesting = 2, length =

>
Z
e
5
g
g
&
00 + T T T T T d
00 02 04 06 08 10 12 o 1 2 3 4 5
iteration 1e5 iteration 4
LTE Program Evaluation: Addition LTE Program Evaluation: Control
nesting = 3, length = 6 nesting = 3, length = 6
> >
s S
g 3
8 B

iteration
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Results on Language Modelling

Table 2: Validation and test perplexities on WikiText-103, Project Gutenberg, and GigaWord v5.

WikiText-103  Gutenberg  GigaWord
Valid. Test Valid Test Test

LSTM [40] - 48.7 - - -
Temporal CNN [41] - 45.2 - - -
Gated CNN [42] - 37.2 - - -
LSTM [32] 34.1 343 418 455 43.7
Quasi-RNN [43] 32 33 - - -

Relational Memory Core  30.8 31.6 39.2 42.0 38.3

The RRNN obtains competitive perplexity levels, compared to
several strong baselines.
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Results on Language Modelling: WikiText-103

—— RMC
— LSTM

Perplexity
H U
w o

N
o

w
U

w
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Results on Mini-PacMan

800 - 1200 -
— LsTM — LSTM
| = Relational Memary 1000 4 — Relational Memory
=4
E
3
2
[
b|
@
o
e
@
>
-]
100
o T T T T T T 0 T T T 1
05 10 15 20 25 30 00 0s 10 15 20
environment_steps le9 environment_steps 1e9
With viewport Without Viewport

The RRNN outperforms an LSTM when used as a policy network
(for IMPALA). Specifically, when the entire map is observed, it
doubles the LSTM performance!
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Concluding remarks

» Empowering neural networks with various kinds of relational
reasoning modules will likely be a necessary step towards
strong and robust intelligent systems.

» This claim is clearly supported by several “failure modes” of
baseline architectures we considered today.

» One limitation going forward lies in the all-pairs interactions,
which will limit scalability to larger object sets, especially if
self-attention is used.

» The NRI (Kipf, Fetaya et al., 2018) offers one possible direction
to address this, but probably not the ultimate solution. ..

» In my opinion, particularly important avenue for future work are
graph-structured memories; where we are not restricted to a
matrix, and relations between slots are not all-pairs.
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Thank you!

Questions?

petar.velickovic@cst.cam.ac.uk

http://www.cst.cam.ac.uk/~pv273/
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