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A very hot research topic
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Graph neural networks (GNNS)
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General blueprint for learning on graphs
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General blueprint for learning on graphs
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General blueprint for learning on graphs

Node classification

Z; — f(hi)
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General blueprint for learning on graphs

Node classification

Z; — f(hi)

Graph classification

zg = f (Gaiev hi)
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General blueprint for learning on graphs

Node classification

Z; — f(hi)

Graph classification

zg = f (GBiEV hi)

Link prediction
z;; = f(hi, hj, e;;)
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Impactful applications in science and industry
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Molecules are graphs!

e A very natural way to represent molecules is as a graph
o Atoms as nodes, bonds as edges
o Features such as atom type, charge, bond type...

o



GNNs for molecule classification

e Interesting task to predict is, for example, whether the molecule is a potent drug.
o Can do binary classification on whether the drug will inhibit certain bacteria. (E.coli)
o Train on a curated dataset for compounds where response is known.
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Follow-up study

e Once trained, the model can be applied to any molecule.
o Execute on a large dataset of known candidate molecules.
o Select the ~top-100 candidates from your GNN model.

o Have chemists thoroughly investigate those (after some additional filtering).

e Discover a previously overlooked compound that is a highly potent antibiotic!
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...Achieve wide acclaim!

Arguably the most popularised success story of graph neural networks to date!

(Stokes et al., Cell'20)
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A Deep Learning Approach to Antibiotic Discovery
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In Brief

A trained deep neural network predicts
antibiotic activity in molecules that are
structurally different from known
antibiotics, among which Halicin exhibits
efficacy against broad-spectrum
bacterial infections in mice.

O



...Achieve wide acclaim!

Arguably the most popularised success story of graph neural networks to date!

Cell

nature

NEWS . 20 FEBRUARY 2020

Powerful antibiotics discovered using Al

Machine learning spots molecules that work even against ‘untreatable’ strains of
bacteria.

(Stokes et al., Cell'’20) !"""‘“’% v ‘ goc
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...Achieve wide acclaim!
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Machine learning uncovers potent new drug able to kill 35 powerful bacteria
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Impactful applications in science and industry

Cell

A Deep Learning Approach to Antibiotic Discovery
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Impactful applications in science and industry

PinSage: A new graph
convolutional neural network for
web-scale recommender systems
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Impactful applications in science and industry
nature

Explore content v  Journal information v  Publish with us v Subscribe

nature > articles > article

Article | Published: 09 June 2021
A graph placement methodology for fast chip design

'% ‘_ '% Azalia Mirhoseini &, Anna Goldie &, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
® . L @ Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa,

William Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter & Jeff Dean

& GOOGLE TECH ARTIFICIAL INTELLIGENCE

Google is using Al to design its next generation of
Al chips more quickly than humans can

Designs that take humans months can be matched or beaten by Al in six hours

", ! By James Vincent | Jun 10, 2021, 9:13am EDT

Chip design (TPUv5)




Impactful applications from DeepMind
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Impactful applications from DeepMind
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Impactful applications from DeepMind

Solving Mixed Integer Programs Using Neural
Networks
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Lobov*!, Brendan O’Donoghue*!, Nicolas Sonnerat*!, Christian Tjandraatmadja*?, Pengming
Wang*!, Ravichandra Addanki!, Tharindi Hapuarachchi', Thomas Keck', James Keeling?,

Pushmeet Kohli!, Ira Ktena!, Yujia Li!, Oriol Vinyals!, Yori Zwols!
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Combinatorial optimisation



Impactful applications from DeepMind

ETA Prediction with Graph Neural Networks in Google Maps

Austin Derrow-Pinion!, Jennifer She!, David Wong?*, Oliver Lange?, Todd Hester**, Luis Perez>*,
Marc Nunkesser?, Seongjae Lee?, Xueying Guo®, Brett Wiltshire!, Peter W. Battaglia!, Vishal

Guptal, Ang Li', Zhongwen Xu®*, Alvaro Sanchez-Gonzalez!, Yujia Li' and Petar Veli¢kovié¢!
DeepMind ?Waymo 3Google “Amazon >Facebook AI °Sea AlLab *work done while at DeepMind
{derrowap,jenshe,wongda,petarvi@google.com
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Making sense of Al

DeepMind claims its Al improved Google Maps
travel time estimates by up to 50%

Kyle Wiggers @Kyle_L_Wiggers September 3, 2020 7:00 AM

Travel-time Prediction in Google Maps






Traffic maps are graphs!

Transportation maps (e.g. the ones found on Google Maps) naturally modelled as graphs.

Y i

Q

: 0O
O

Nodes could be intersections, and edges could be roads.

o



Estimated Time of Arrival (ETA) Prediction

e A critical service provided by Google Maps is ETA prediction.
o Given a start-point and end-point, what is the expected travel time?

o Important for both users and ride-sharing/delivery companies (using the Maps API).

e Relevant node features: road length, current speeds, historical speeds

e Use anonymised, crowd-sourced real-time / historical traffic data.
o Not as reliable as e.g. physical speed sensors
o Traffic conditions change dynamically and unpredictably
o Most trips between [10min, 1h], requiring near-future predictions

O



DeepMind’s approach: Graph Nets on Supersegments

Partition candidate route into supersegments, sampled proportionally to (est.) traffic density.

Run a GNN over supersegment graph to estimate ETA (graph regression).

O



Overall pipeline

Rank candidate routes by predicted ETA, surface information to Google Maps.
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Returns

Already deployed worldwide, significantly reducing negative ETA outcomes!
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Rich ecosystem of libraries
O 2
. Pygggn':&rh m Spektral

github.com/rustyls/pytorch geometric graphneural . network
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Rich ecosystem of datasets

OGB o Pygecgnl;g;rtg /* TUDataset

ogb.stanford. edu graphlearning.io

https://pytorch-geometric. readthedocs.
io/en/latest/modules/datasets.html

Benchmarking Graph Neural Networks

github.com/graphdeeplearning/benchmarking-gnns

O



Getting into it!

e |recently compiled a list of many useful GNN resources in a Twitter thread

o https://twitter.com/PetarV 93/status/1306689702020382720

e When you feel ready, | highly recommend Aleksa Gordi¢’s GitHub repository on GATs:

o https://github.com/gordicaleksa/pytorch-GAT
o Arguably the most gentle introduction to GNN implementations

O


https://twitter.com/PetarV_93/status/1306689702020382720
https://github.com/gordicaleksa/pytorch-GAT
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How powerful are Graph Neural Networks?

e GNNs are a powerful tool for processing real-world graph data
o But they won't solve any task specified on a graph accurately!

e Canonical example: deciding graph isomorphism
o Am | able to use my GNN to distinguish two non-isomorphic graphs? (hG1 z h
o If I can’t, any kind of task discriminating them is hopeless

e We will assess the power of GNNs by which graphs they are able to distinguish.

GZ)
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Weisfeiler-Lehman Test

Simple but powerful way of distinguishing: pass random hashes of sums along the edges

Iterate until hashes don't change.
“Possibly isomorphic” if hash histograms are the same.
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Let’s run the WL Test!
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Let’s run the WL Test!
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Let’s run the WL Test!
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Let’s run the WL Test!
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Weisfeiler-Lehman Test

Connection to conv-GNNs spotted very early; e.g. by GCN (Kipf & Welling, ICLR"17)

[ ]

e Untrained GNNs can hence work very well!
o Untrained ~ random hash

e The test does fail at times, however:

Algorithm 1: WL-1 algorithm (Weisfeiler & Lehmann, 1968)
Input: Initial node coloring (h§°), hgo), o~ hg\(,)))

Output: Final node coloring (hgT), hgT), ey hg))
t<0;
repeat

for v; € V do

L R fhash () hg.t));

t+—t+1;
until stable node coloring is reached,

h; =|¢ | xi, P|eio(x;)| |

JEN;

O



GNNs are no more powerful than 1-WL

e Over discrete features, GNNs can only be as powerful as the 1-WL test described before!
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GNNs are no more powerful than 1-WL

e Over discrete features, GNNs can only be as powerful as the 1-WL test described before!

e One important condition for maximal power is an injective aggregator (e.g. sum)
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Input sum - multiset mean - distribution max - set
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GNNs are no more powerful than 1-WL

e Over discrete features, GNNs can only be as powerful as the 1-WL test described before!

e One important condition for maximal power is an injective aggregator (e.g. sum)

¢ @ e & o >
v N @
Input sum - multiset mean - distribution max - set

e Graph isomorphism network (GIN; Xu et al,, ICLR'19) proposes a simple,
maximally-expressive GNN, following this principle:

(k) — (k) (k) ) . p(k—1) (k—1)
0 =3ip (140) BT )

O



@
Higher-order GNNs

e We can make GNNs stronger by analysing failure cases of 1-WL!
o \Very active area, with many open problems!

O



O
Higher-order GNNs

e We can make GNNs stronger by analysing failure cases of 1-WL!

e For example, just like T-WL, GNNs cannot detect closed triangles
o This is because, from a GNN's perspective, all nodes look the samel!
o  Can you think of a simple fix?

input graph

what GNNs see

O



@
Higher-order GNNs

e We can make GNNs stronger by analysing failure cases of 1-WL!

e For example, just like T-WL, GNNs cannot detect closed triangles
o Augment nodes with randomised features (Sato et al, SODM'21)
o Now a node can “see itself” k hops away!

input graph

input same
ayer colo

hat GNNs see
N -
5> >
[e] (o]
S

% 3100 @O @



@
Higher-order GNNs

e We can make GNNs stronger by analysing failure cases of 1-WL!

For example, just like 1-WL, GNNs cannot detect closed triangles
o Augment nodes with randomised/positional features (Sato et al, SDM'21)
m Explored by RP-GNN (Murphy et al, ICML19) and P-GNN (You et al, ICML"19)
o Can also literally count interesting subgraphs (Bouritsas et al, 2020)

Fixing “failure cases” of 1-WL yields many classes of higher-order GNNs

They can broadly be categorised into three groups:
o Modifying features (as above)
o Modifying the message passing rule; e.g. DGN (Beaini, Passaro et al. (2020))
o Modifying the graph structure; e.g. 1-2-3-GNNs (Morris et al, AAAI'9)

O



Going beyond discrete features

e What happens when features are continuous? (real-world apps / latent GNN states)
o ..the proof for injectivity of sum (hence GINs’ expressivity) falls apart

Node receiving the Message of neighbour

message no‘de #1
) 0 0 il
Graph 1:
2 2 e 2 4
Message of A 2 4 i
neighbour node #2
VS VS VS VS
4 2 4 0
Graph 2: 0 0 0 - 4 3 h
0
Simple aggregators that can Mean Mean Mean Mean
differentiate graph 1 and 2: Min Min Min Min

Aggregators that fail: Max Max Max Max G
STD STD STD STD



Which is best? Neither.

e There doesn’t seem to be a clear single “winner” aggregator here..

e In fact, we prove in the PNA paper that there isn’t one!

Theorem 1 (Number of aggregators needed). In order to discriminate between multisets of size n
whose underlying set is R, at least n aggregators are needed.

e The proof is (in my opinion) really cool! (relies on Borsuk-Ulam theorem)

e PNA proposes empirically powerful combination of aggregators for general-purpose GNNs:

I N
=| S(D,a=1) || 7
@ S(D,a=-1) max
N _ | min |
sczlgrs ~—

aggregators

O
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Further insight: graph representation learning

If GNNs are new(ish) to you, | recently gave a useful talk on theoretical GNN foundations:
https://www.youtube.com/watch?v=uF53xsT7mjc

DeepMind

Theoretical Foundations

of Graph Neural Networks

Petar Velickovi¢

CST Wednesday Seminar
17 February 2021

O


https://www.youtube.com/watch?v=uF53xsT7mjc

Further insight: bleeding-edge applications

For an in-depth view of bleeding edge applications of GNNs, check out my EEML 2020 talk:
https://www.youtube.com/watch?v=fpb3j33RfTc

DeepMind

.,

Applying Graph Neural Networks ’

at the Bleeding Edge [
(i

Petar Velickovié
EEML 2020 Focuse d Lecture ‘
7 July 2020

O


https://www.youtube.com/watch?v=fpb3j33RfTc

DeepMind

Thank you!

Questions?

petarv@deepmind.com | https://petar-v.com

O
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