
Adversarial learning meets graphs

. . . and why should you care?

Petar Veličković

Artificial Intelligence Group
Department of Computer Science and Technology, University of Cambridge, UK

University of Oxford Cyber Physical Systems Seminars 8 January 2019

Introduction

I In this talk, I will attempt to give you a comprehensive overview
of the current state-of-the-art on the intersection of
graph-based neural networks and adversarial learning.

I The discussion will span the following research directions:
I Graph convolutional networks;
I Generative models of graphs;
I Semi-supervised adversarial learning on graphs;
I Graph-based adversarial defence.

I I assume no prior knowledge of graph neural networks.
I Please stop me whenever necessary!
I Disclaimer: I’m a graph person, not a GAN person.

Roadmap for today

Graph convolutional networks
I GCN (Kipf & Welling, ICLR 2017)
I MPNN (Gilmer et al., ICML 2017)
I GAT (Veličković et al., ICLR 2018)

Generative models of graphs
I MolGAN (De Cao & Kipf, ICML TADGM 2018)
I GCPN (You et al., NeurIPS 2018)

Semi-supervised adversarial learning on graphs
I GraphSGAN (Ding et al., CIKM 2018)

Graph-based adversarial defence
I PeerNets (Svoboda et al., ICLR 2019)

Graphs are everywhere!

Mathematical setup

I We will usually think of graphs, G = (V ,E), in terms of sets of
nodes, V , and edges, E , between them.

I Each node may contain a certain set of features. This is
represented by a node feature matrix, F ∈ RN×F , with F
features in each of the N nodes.

I We will represent edges as an adjacency matrix, A ∈ RN×N .
I The entries of A may be binary, or real-valued—or even consist

of arbitrary edge features! Also will often assume sparsity.

I We will denote the neighbourhood of node i by Ni . It will
usually consist of all of i ’s first-order neighbours, including i
itself, i.e. Ni = {j | i = j ∨ Aij 6= 0}.

The silver bullet—a convolutional layer

I Graphs can be seen as a strict generalisation of images.
I Can represent any image as a “grid graph” (every node incident

to its four neighbours) with pixel values as node features.

I It would be, therefore, highly appropriate if we could somehow
generalise the convolutional operator (as used in CNNs) to
operate on arbitrary graphs!

I This will eventually result in a graph convolutional network.

Convolution on images

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗ K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Convolution on images

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗ K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Convolution on images

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗ K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Convolution on images

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗ K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Graph convolutional network?

In a nutshell, obtain higher-level representations of a node i by
leveraging its neighbourhood, Ni !

~h`+1
i = g`(~h`a, ~h

`
b,
~h`c , . . .) (a,b, c, · · · ∈ Ni)

where g` is the `-th graph convolutional layer.

Graph convolutional network?

In a nutshell, obtain higher-level representations of a node i by
leveraging its neighbourhood, Ni !

~h`+1
i = g`(~h`a, ~h

`
b,
~h`c , . . .) (a,b, c, · · · ∈ Ni)

where g` is the `-th graph convolutional layer.

Challenges with graph convolutions

I Desirable properties for a graph convolutional layer:
I Computational and storage efficiency (∼ O(V + E));
I Fixed number of parameters (independent of input size);
I Localisation (acts on a local neighbourhood of a node);
I Specifying different importances to different neighbours;
I Applicability to inductive problems.

I Fortunately, images have a highly rigid and regular connectivity
pattern, making such an operator trivial to deploy (as a small
kernel matrix which is slided across).

I Arbitrary graphs are a much harder challenge!

Roadmap for today

Graph convolutional networks
I GCN (Kipf & Welling, ICLR 2017)
I MPNN (Gilmer et al., ICML 2017)
I GAT (Veličković et al., ICLR 2018)

Generative models of graphs
I MolGAN (De Cao & Kipf, ICML TADGM 2018)
I GCPN (You et al., NeurIPS 2018)

Semi-supervised adversarial learning on graphs
I GraphSGAN (Ding et al., CIKM 2018)

Graph-based adversarial defence
I PeerNets (Svoboda et al., ICLR 2019)

Towards a simple update rule

I Let’s assume our graph is unweighted and undirected.

I That is, Aij = Aji =

{
1 i ↔ j
0 otherwise

I We can then easily aggregate neighbourhoods through
multiplying by the adjacency matrix!

H′ = σ (AHW)

where W is a learnable node-wise shared linear transformation,
and σ is a nonlinearity.

I A few things need to be fixed. . .

Towards a simple update rule, cont’d

I Firstly, this update rule discards the central node. Provide a
simple correction:

H′ = σ
(

ÃHW
)

where Ã = A + IN .

I The update rule can now be rewritten, node-wise, as:

~h′i = σ

∑
j∈Ni

W~hj

The mean-pooling update rule

I Secondly, multiplication by A may increase the scale of the
output features—we need to normalise appropriately, e.g. by

H′ = σ
(

D̃−1ÃHW
)

where D̃ is the degree matrix of Ã, i.e. D̃ii =
∑

j Ãij .
I We arrive at the mean-pooling update rule:

~h′i = σ

∑
j∈Ni

1
|Ni |

W~hj

which is simple but versatile (common for inductive problems!).

GCN (Kipf & Welling, ICLR 2017)

I If we instead use symmetric normalisation:

H′ = σ
(

D̃−
1
2 ÃD̃−

1
2 HW

)
we obtain the graph convolutional network (GCN) update rule!

I Node-wise, this can be written as follows:

~h′i = σ

∑
j∈Ni

1√
|Ni ||Nj |

W~hj

and it represents the currently most popular graph
convolutional layer (simple and powerful, albeit not inductive).

Towards a more general update rule

I The GCN model only indirectly supports edge features.

I One way to correct this is to instead focus on edge-wise
mechanisms: most generally, nodes can send messages
(arbitrary vectors) along edges of the graph!

I These messages can be conditioned by edge features.

I Then, a node can aggregate all messages sent to it.

MPNN (Gilmer et al., ICML 2017)

I Let ~mij be the message sent across edge i → j , computed
using a message function fe : RN × RN × RM → RK :

~mij = fe
(
~hi , ~hj , ~eij

)
I Now, aggregating all messages entering a node, transformed

using an aggregation function fv : RN × RK → RN :

~h′i = fv

~hi ,
∑
j∈Ni

~mij

we arrive at the message-passing neural network (MPNN)!

I fe and fv are usually (small) MLPs.

MPNN: initial setup

~h`1

~h`2

~h`3

~h`4

~h`5

~h`6

MPNN: computing messages

~h`1

~h`2

~h`3

~h`4

~h`5

~h`6 ~h`3 ~h`4

f `e

~m`
34

MPNN: aggregating messages

~h`1

~h`2

~h`3

∑

~h`5

~h`6

~m`
24

~m`
34

~m`
54

~m`
64

~h`3 ~h`4

f `e

~m`
34

MPNN: computing node features

~h`1

~h`2

~h`3

∑

~h`5

~h`6

~m`
24

~m`
34

~m`
54

~m`
64

~h`3 ~h`4

f `e

~m`
34

f `v ~h`+1
4

MPNN: next-level features

~h`1

~h`2

~h`3

~h`+1
4

~h`5

~h`6

~m`
24

~m`
34 ~m`

54

~m`
64

~h`3 ~h`4

f `e

~m`
34

f `v ~h`+1
4

Towards a “golden middle”

I The MPNN model is the most potent graph convolutional layer,
but requires storage and manipulation of edge messages,
which quickly becomes troublesome memory-wise.

I In practice, only applicable to small graphs.
I Can think of them as “MLPs” of the graph domain.

I As an intermediate approach, let’s consider a more general
form of the GCN update rule:

~h′i = σ

∑
j∈Ni

αijW~hj

The GCN’s shortcomings lied in making αij explicit (based on
graph structure).

GAT (Veličković et al., ICLR 2018)

I Instead, if we let αij be computed implicitly. . .

eij = a(~hi , ~hj , ~eij)

αij =
exp(eij)∑

k∈Ni
exp(eik)

. . . where a : RN × RN × RM → R is a learnable, shared,
self-attention mechanism (e.g. Transformer attention). . .

I . . . we arrive at the graph attention network (GAT) update rule!
I In practice, significantly stablised through multi-head attention.
I Probably not as general as MPNNs, but trivially scalable.

A single GAT step, visualised

αij

~a

so
ftm

ax
j

~hi
~hj

~h1

~h2

~h3

~h4

~h5

~h6

~α
16

~α11

~α
12

~α13

~α 14

~α
15

~h′1
concat/avg

Roadmap for today

Graph convolutional networks
GCN (Kipf & Welling, ICLR 2017)
MPNN (Gilmer et al., ICML 2017)
GAT (Veličković et al., ICLR 2018)

Generative models of graphs
I MolGAN (De Cao & Kipf, ICML TADGM 2018)
I GCPN (You et al., NeurIPS 2018)

Semi-supervised adversarial learning on graphs
I GraphSGAN (Ding et al., CIKM 2018)

Graph-based adversarial defence
I PeerNets (Svoboda et al., ICLR 2019)

Generative models of graphs

I We seek a model capable of producing graphs that “capture”
the empirical properties of a given distribution of graphs
(usually via a training set).

I Very challenging! Thus far majority of results in the domain of
small chemicals (< 50 nodes!).

I Still, even in this domain, immense potential for important
tasks, such as drug discovery!

Issues with generative modelling of graphs

I We have the option of directly generating graphs from a given
noise input, ~z, either:

I Sequentially (GraphRNN; You et al., ICML 2018); or
I All-at-once (GraphVAE; Simonovsky et al., 2018)

using a likelihood-based objective. . .

I . . . but this is troublesome, as it requires either a fixed node
ordering or (expensive) graph matching!

I GANs to the rescue!

GANs to the rescue!

I Implicit models such as GANs alleviate the previous issues.

I However, generating a graph involves discrete choices (e.g.
choosing edges)—as such, cannot directly backpropagate
through the generator.

I Requires the use of reinforcement learning or the Gumbel
softmax trick in practice.

I RL can also be beneficial to, e.g., enforce certain chemical
properties through reward signals.

I In this space, we may once again generate graphs all-at-once,
or sequentially. I will now present one example of each—both
concurrently published.

MolGAN (De Cao & Kipf, ICML TADGM 2018)

Molecular graph
Generator Discriminator

Reward
network

z ~ p(z)

0/1

0/1

x ~ pdata(x)

MolGAN: Generator

I The authors upfront limit the number of atoms in the generated
molecule to 9 (to match their dataset).

I This allows generating the node annotation matrix X ∈ RN×T

(probability of each of T atom types) and adjacency tensor
A ∈ RN×N×K (probability of each of K bond types), all-at-once.

I That is, the MolGAN generator, Gθ, computes X and A through
an MLP applied to ~z ∼ N (~0, I).

I Sample one-hot versions (X̃ and Ã) using the Gumbel softmax
trick, to allow backpropagating through the generator.

MolGAN: Discriminator/Reward network

I The discriminator, Dφ, and reward network, Rψ, receive as
input a graph (X̃, Ã), either real or generated.

I Compute several GCN-style updates over the nodes:

~h′i = tanh

fs(~hi ,
~̃xi) +

N∑
j=1

K∑
k=1

Ãijk

|Ni |
fk (~hj ,

~̃xi)

where fs and fk are MLPs (one per each bond type!).

MolGAN: Discriminator/Reward network, cont’d

I Then, summarise the obtained features, ~hi , into a graph
representation, ~hG, as follows (Li et al., ICLR 2016):

~hG = tanh

(∑
i

σ(a(~hi ,
~̃xi))� tanh(b(~hi ,

~̃xi))

)

where a and b are MLPs, and σ is the logistic sigmoid.

I Finally, ~hG is used as input to the discriminator/reward MLPs
(for obtaining the relevant scores).

I The discriminator and reward networks are entirely disjoint!

MolGAN, expanded

Generator

Graph

Molecule

N

N

N

N

N N

T T

z ~ p(z)

Adjacency tensor Sampled

SampledAnnotation matrix

~

~

GCN

GCN

0/1

0/1

Discriminator

Reward network

A<latexit sha1_base64="EMPyu5ASlEpI1qvrJeu1mckhUAU=">AAAB8XicbVDLSsNAFL3xWeur6tLNYBFclUSEuqy4cVnBPrANZTKdtEMnkzBzI5TQv3DjQhG3/o07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJbe53nrg2IlYPOE24H9GREqFgFK302I8ojoMwu5kNKlW35s5BVolXkCoUaA4qX/1hzNKIK2SSGtPz3AT9jGoUTPJZuZ8anlA2oSPes1TRiBs/myeekXOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLYleMsnr5L2Zc1za979VbVRL+oowSmcwQV4UIcG3EETWsBAwTO8wptjnBfn3flYjK45xc4J/IHz+QOmV5Da</latexit><latexit sha1_base64="EMPyu5ASlEpI1qvrJeu1mckhUAU=">AAAB8XicbVDLSsNAFL3xWeur6tLNYBFclUSEuqy4cVnBPrANZTKdtEMnkzBzI5TQv3DjQhG3/o07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJbe53nrg2IlYPOE24H9GREqFgFK302I8ojoMwu5kNKlW35s5BVolXkCoUaA4qX/1hzNKIK2SSGtPz3AT9jGoUTPJZuZ8anlA2oSPes1TRiBs/myeekXOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLYleMsnr5L2Zc1za979VbVRL+oowSmcwQV4UIcG3EETWsBAwTO8wptjnBfn3flYjK45xc4J/IHz+QOmV5Da</latexit><latexit sha1_base64="EMPyu5ASlEpI1qvrJeu1mckhUAU=">AAAB8XicbVDLSsNAFL3xWeur6tLNYBFclUSEuqy4cVnBPrANZTKdtEMnkzBzI5TQv3DjQhG3/o07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJbe53nrg2IlYPOE24H9GREqFgFK302I8ojoMwu5kNKlW35s5BVolXkCoUaA4qX/1hzNKIK2SSGtPz3AT9jGoUTPJZuZ8anlA2oSPes1TRiBs/myeekXOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLYleMsnr5L2Zc1za979VbVRL+oowSmcwQV4UIcG3EETWsBAwTO8wptjnBfn3flYjK45xc4J/IHz+QOmV5Da</latexit><latexit sha1_base64="EMPyu5ASlEpI1qvrJeu1mckhUAU=">AAAB8XicbVDLSsNAFL3xWeur6tLNYBFclUSEuqy4cVnBPrANZTKdtEMnkzBzI5TQv3DjQhG3/o07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJbe53nrg2IlYPOE24H9GREqFgFK302I8ojoMwu5kNKlW35s5BVolXkCoUaA4qX/1hzNKIK2SSGtPz3AT9jGoUTPJZuZ8anlA2oSPes1TRiBs/myeekXOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLYleMsnr5L2Zc1za979VbVRL+oowSmcwQV4UIcG3EETWsBAwTO8wptjnBfn3flYjK45xc4J/IHz+QOmV5Da</latexit>

X<latexit sha1_base64="k8fMTYMpbcAk1m6rTYMegJsdMOM=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXBjcsK9oFtKJPppB06mYSZG6GE/oUbF4q49W/c+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94CzhfkTHSoSCUbTS4yCiOAnCrDcfVmtu3V2ArBOvIDUo0BpWvwajmKURV8gkNabvuQn6GdUomOTzyiA1PKFsSse8b6miETd+tkg8JxdWGZEw1vYpJAv190ZGI2NmUWAn84Rm1cvF/7x+iuGNnwmVpMgVW34UppJgTPLzyUhozlDOLKFMC5uVsAnVlKEtqWJL8FZPXiedq7rn1r3761qzUdRRhjM4h0vwoAFNuIMWtIGBgmd4hTfHOC/Ou/OxHC05xc4p/IHz+QPJSpDx</latexit><latexit sha1_base64="k8fMTYMpbcAk1m6rTYMegJsdMOM=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXBjcsK9oFtKJPppB06mYSZG6GE/oUbF4q49W/c+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94CzhfkTHSoSCUbTS4yCiOAnCrDcfVmtu3V2ArBOvIDUo0BpWvwajmKURV8gkNabvuQn6GdUomOTzyiA1PKFsSse8b6miETd+tkg8JxdWGZEw1vYpJAv190ZGI2NmUWAn84Rm1cvF/7x+iuGNnwmVpMgVW34UppJgTPLzyUhozlDOLKFMC5uVsAnVlKEtqWJL8FZPXiedq7rn1r3761qzUdRRhjM4h0vwoAFNuIMWtIGBgmd4hTfHOC/Ou/OxHC05xc4p/IHz+QPJSpDx</latexit><latexit sha1_base64="k8fMTYMpbcAk1m6rTYMegJsdMOM=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXBjcsK9oFtKJPppB06mYSZG6GE/oUbF4q49W/c+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94CzhfkTHSoSCUbTS4yCiOAnCrDcfVmtu3V2ArBOvIDUo0BpWvwajmKURV8gkNabvuQn6GdUomOTzyiA1PKFsSse8b6miETd+tkg8JxdWGZEw1vYpJAv190ZGI2NmUWAn84Rm1cvF/7x+iuGNnwmVpMgVW34UppJgTPLzyUhozlDOLKFMC5uVsAnVlKEtqWJL8FZPXiedq7rn1r3761qzUdRRhjM4h0vwoAFNuIMWtIGBgmd4hTfHOC/Ou/OxHC05xc4p/IHz+QPJSpDx</latexit><latexit sha1_base64="k8fMTYMpbcAk1m6rTYMegJsdMOM=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXBjcsK9oFtKJPppB06mYSZG6GE/oUbF4q49W/c+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94CzhfkTHSoSCUbTS4yCiOAnCrDcfVmtu3V2ArBOvIDUo0BpWvwajmKURV8gkNabvuQn6GdUomOTzyiA1PKFsSse8b6miETd+tkg8JxdWGZEw1vYpJAv190ZGI2NmUWAn84Rm1cvF/7x+iuGNnwmVpMgVW34UppJgTPLzyUhozlDOLKFMC5uVsAnVlKEtqWJL8FZPXiedq7rn1r3761qzUdRRhjM4h0vwoAFNuIMWtIGBgmd4hTfHOC/Ou/OxHC05xc4p/IHz+QPJSpDx</latexit> X̃<latexit sha1_base64="h5fkkvOPNqe9NI7w0SLn2N2FVmc=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KokIdVlw47KCfUATymQyaYdOJmFmIpaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJUs6Udpxva2Nza3tnt7ZX3z84PDq2Txp9lWSS0B5JeCKHAVaUM0F7mmlOh6mkOA44HQSz29IfPFKpWCIe9DylfowngkWMYG2ksd3wYqynQZR7mvGQ5sOiGNtNp+UsgNaJW5EmVOiO7S8vTEgWU6EJx0qNXCfVfo6lZoTTou5liqaYzPCEjgwVOKbKzxfZC3RhlBBFiTRPaLRQf2/kOFZqHgdmskyqVr1S/M8bZTq68XMm0kxTQZaHoowjnaCyCBQySYnmc0MwkcxkRWSKJSba1FU3JbirX14n/auW67Tc++tmp13VUYMzOIdLcKENHbiDLvSAwBM8wyu8WYX1Yr1bH8vRDavaOYU/sD5/ALyelNg=</latexit><latexit sha1_base64="h5fkkvOPNqe9NI7w0SLn2N2FVmc=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KokIdVlw47KCfUATymQyaYdOJmFmIpaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJUs6Udpxva2Nza3tnt7ZX3z84PDq2Txp9lWSS0B5JeCKHAVaUM0F7mmlOh6mkOA44HQSz29IfPFKpWCIe9DylfowngkWMYG2ksd3wYqynQZR7mvGQ5sOiGNtNp+UsgNaJW5EmVOiO7S8vTEgWU6EJx0qNXCfVfo6lZoTTou5liqaYzPCEjgwVOKbKzxfZC3RhlBBFiTRPaLRQf2/kOFZqHgdmskyqVr1S/M8bZTq68XMm0kxTQZaHoowjnaCyCBQySYnmc0MwkcxkRWSKJSba1FU3JbirX14n/auW67Tc++tmp13VUYMzOIdLcKENHbiDLvSAwBM8wyu8WYX1Yr1bH8vRDavaOYU/sD5/ALyelNg=</latexit><latexit sha1_base64="h5fkkvOPNqe9NI7w0SLn2N2FVmc=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KokIdVlw47KCfUATymQyaYdOJmFmIpaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJUs6Udpxva2Nza3tnt7ZX3z84PDq2Txp9lWSS0B5JeCKHAVaUM0F7mmlOh6mkOA44HQSz29IfPFKpWCIe9DylfowngkWMYG2ksd3wYqynQZR7mvGQ5sOiGNtNp+UsgNaJW5EmVOiO7S8vTEgWU6EJx0qNXCfVfo6lZoTTou5liqaYzPCEjgwVOKbKzxfZC3RhlBBFiTRPaLRQf2/kOFZqHgdmskyqVr1S/M8bZTq68XMm0kxTQZaHoowjnaCyCBQySYnmc0MwkcxkRWSKJSba1FU3JbirX14n/auW67Tc++tmp13VUYMzOIdLcKENHbiDLvSAwBM8wyu8WYX1Yr1bH8vRDavaOYU/sD5/ALyelNg=</latexit><latexit sha1_base64="h5fkkvOPNqe9NI7w0SLn2N2FVmc=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KokIdVlw47KCfUATymQyaYdOJmFmIpaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJUs6Udpxva2Nza3tnt7ZX3z84PDq2Txp9lWSS0B5JeCKHAVaUM0F7mmlOh6mkOA44HQSz29IfPFKpWCIe9DylfowngkWMYG2ksd3wYqynQZR7mvGQ5sOiGNtNp+UsgNaJW5EmVOiO7S8vTEgWU6EJx0qNXCfVfo6lZoTTou5liqaYzPCEjgwVOKbKzxfZC3RhlBBFiTRPaLRQf2/kOFZqHgdmskyqVr1S/M8bZTq68XMm0kxTQZaHoowjnaCyCBQySYnmc0MwkcxkRWSKJSba1FU3JbirX14n/auW67Tc++tmp13VUYMzOIdLcKENHbiDLvSAwBM8wyu8WYX1Yr1bH8vRDavaOYU/sD5/ALyelNg=</latexit>

Ã<latexit sha1_base64="IVJAEzjPjiXPvp4Oo4QNTUc/Kds=">AAAB+3icbVDLSsNAFL2pr1pftS7dDBbBVUlEqMuKG5cV7AOaUCaTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOn3CmtG1/W5WNza3tnepubW//4PCoftzoqziVhPZIzGM59LGinAna00xzOkwkxZHP6cCf3Rb+4JFKxWLxoOcJ9SI8ESxkBGsjjesNN8J66oeZqxkPaHaT5+N6027ZC6B14pSkCSW64/qXG8QkjajQhGOlRo6daC/DUjPCaV5zU0UTTGZ4QkeGChxR5WWL7Dk6N0qAwliaJzRaqL83MhwpNY98M1kkVateIf7njVIdXnsZE0mqqSDLQ2HKkY5RUQQKmKRE87khmEhmsiIyxRITbeqqmRKc1S+vk/5ly7Fbzv1Vs9Mu66jCKZzBBTjQhg7cQRd6QOAJnuEV3qzcerHerY/laMUqd07gD6zPH5mUlME=</latexit><latexit sha1_base64="IVJAEzjPjiXPvp4Oo4QNTUc/Kds=">AAAB+3icbVDLSsNAFL2pr1pftS7dDBbBVUlEqMuKG5cV7AOaUCaTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOn3CmtG1/W5WNza3tnepubW//4PCoftzoqziVhPZIzGM59LGinAna00xzOkwkxZHP6cCf3Rb+4JFKxWLxoOcJ9SI8ESxkBGsjjesNN8J66oeZqxkPaHaT5+N6027ZC6B14pSkCSW64/qXG8QkjajQhGOlRo6daC/DUjPCaV5zU0UTTGZ4QkeGChxR5WWL7Dk6N0qAwliaJzRaqL83MhwpNY98M1kkVateIf7njVIdXnsZE0mqqSDLQ2HKkY5RUQQKmKRE87khmEhmsiIyxRITbeqqmRKc1S+vk/5ly7Fbzv1Vs9Mu66jCKZzBBTjQhg7cQRd6QOAJnuEV3qzcerHerY/laMUqd07gD6zPH5mUlME=</latexit><latexit sha1_base64="IVJAEzjPjiXPvp4Oo4QNTUc/Kds=">AAAB+3icbVDLSsNAFL2pr1pftS7dDBbBVUlEqMuKG5cV7AOaUCaTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOn3CmtG1/W5WNza3tnepubW//4PCoftzoqziVhPZIzGM59LGinAna00xzOkwkxZHP6cCf3Rb+4JFKxWLxoOcJ9SI8ESxkBGsjjesNN8J66oeZqxkPaHaT5+N6027ZC6B14pSkCSW64/qXG8QkjajQhGOlRo6daC/DUjPCaV5zU0UTTGZ4QkeGChxR5WWL7Dk6N0qAwliaJzRaqL83MhwpNY98M1kkVateIf7njVIdXnsZE0mqqSDLQ2HKkY5RUQQKmKRE87khmEhmsiIyxRITbeqqmRKc1S+vk/5ly7Fbzv1Vs9Mu66jCKZzBBTjQhg7cQRd6QOAJnuEV3qzcerHerY/laMUqd07gD6zPH5mUlME=</latexit><latexit sha1_base64="IVJAEzjPjiXPvp4Oo4QNTUc/Kds=">AAAB+3icbVDLSsNAFL2pr1pftS7dDBbBVUlEqMuKG5cV7AOaUCaTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOn3CmtG1/W5WNza3tnepubW//4PCoftzoqziVhPZIzGM59LGinAna00xzOkwkxZHP6cCf3Rb+4JFKxWLxoOcJ9SI8ESxkBGsjjesNN8J66oeZqxkPaHaT5+N6027ZC6B14pSkCSW64/qXG8QkjajQhGOlRo6daC/DUjPCaV5zU0UTTGZ4QkeGChxR5WWL7Dk6N0qAwliaJzRaqL83MhwpNY98M1kkVateIf7njVIdXnsZE0mqqSDLQ2HKkY5RUQQKmKRE87khmEhmsiIyxRITbeqqmRKc1S+vk/5ly7Fbzv1Vs9Mu66jCKZzBBTjQhg7cQRd6QOAJnuEV3qzcerHerY/laMUqd07gD6zPH5mUlME=</latexit>

MolGAN: Training

I The reward network is optimised to match a chemical property
score which is output by an external software.

I Specially, the reward is zero for invalid molecules.

I The discriminator, Dφ, is optimised using the Improved WGAN
(Gulrajani et al., 2017) objective:

L(~xi ,Gθ;φ) = −Dφ(~xi) + Dφ(Gθ(~zi)) + α
(
‖∇~̂xi

Dφ(~̂xi)‖ − 1
)2

where ~xi ∼ pdata(~x), ~zi ∼ p~z(~z),
and ~̂xi = ε~xi + (1− ε)Gθ(~zi) (ε ∼ U(0,1)).

MolGAN: Generator training

I Since we made a continuous approximation to the sampling
operation (i.e. Gumbel softmax), we can directly propagate
gradients through the generator!

I The generator, Gθ, is trained using a combination of two
objectives:

I the original WGAN objective (Arjovsky et al., 2017); and
I the policy gradients obtained from DDPG (Lillicrap et al., 2015),

using the reward function to obtain rewards.

L(θ) = λLWGAN + (1− λ)LDDPG

I For the purposes of the RL setup, the generator is the policy
network, and the actions correspond to the generated graphs.

Results: Quantitative

Comparative evaluation against ORGAN (Guimaraes et al., 2017).

Trains much faster, but suffers from mode collapse!

Results: Qualitative

O

O

O

O

NH2

O

N OH

O

O

N

O
N N NH

NO

OH

N

O

O

N

HO

N
O

NH

HO

O

NH
O

OH

O

N
O

NH

O

NH

O

O

OHN

O

O

O
O

OO

N

O

HO

HO

NH N
OH

N
O

HN

NH2

N

N

NNH

0.480 0.475 0.498 0.517

0.404 0.464 0.508 0.400

0.515 0.512 0.450 0.556

0.593 0.441 0.492 0.442

0.595 0.287 0.371 0.527

0.462 0.456 0.568 0.337

HO

OH

O

OH

O

HO

OH
OH

O

OH

O

O

OH

HO

HO
O

NH

OH

OH

HO

OH O

O

OH OH OH

NH2

O

HO

O
NH

O

OH

OH OH

0.545 0.572 0.480 0.613

0.571 0.599 0.617 0.529

0.566 0.545 0.535 0.578

0.601 0.601 0.613 0.554

0.569 0.597 0.601 0.523

0.522 0.612 0.619 0.570

Dataset (QM9) MolGAN

GCPN (You et al., NeurIPS 2018)

I The graph convolutional policy network (GCPN) represents,
conversely, a sequential generation method.

I At each step, the generator takes a graph of a partially
constructed molecule (Gt) and a set of scaffolds (Ct), and
makes discrete decisions on:

I Two atoms to connect (one must be in Gt);
I Bond type between them;
I Whether or not to stop.

I Partial molecules are checked by chemical software for validity
and properties; invalid molecules give negative reward and
nullify the action! (N.B. no explicit reward network this time.)

GCPN

Total reward given to the generator is Rchem − V (Gθ,Dφ), where
V (Gθ,Dφ) is the usual GAN value function (Goodfellow et al., 2014):

V (Gθ,Dφ) = E~x∼pdata
[log Dφ(~x)] + E~x∼Gθ

[log (1− Dφ(~x))]

Policy gradients obtained using PPO (Schulman et al., 2017).

GCPN embedding computation

I Both the generator and discriminator compute node
embeddings (from either a (partially-)generated chemical or a
real example) based on a GCN update rule:

H′ =
K∑

k=1

ReLU
(

D̃
− 1

2
k Ãk D̃

− 1
2

k HWk

)
decoupling each of the K bond types.

I These can be averaged into a graph embedding:

~hG =
1
N

N∑
i=1

~hi

GCPN: Policy and discriminator outputs

I Each action consists of four choices: nodes i and j , bond type
k , and stopping decision t . Obtained using appropriate MLPs,
mfirst , msecond , medge and mstop:

i ∼ softmax(mfirst (H(Gt)))

j ∼ softmax(msecond (~hi ,H(Gt∪C)))

k ∼ softmax(medge(~hi , ~hj))

t ∼ softmax(mstop(~hGt))

at+1 = [i , j , k , t]

I The discriminator produces a score based on the output of an
MLP applied to ~hG .

GCPN training

I The discriminator network is trained by SGD on the original
GAN loss.

I The generator network is first pre-trained in an MLE fashion by
using (partially-constructed) real molecules to obtain
ground-truth actions.

I Afterwards, use PPO on the obtained chemical score and
discriminator output to train via policy gradients.

Results: Property optimisation

Results: Property targeting

Results: Constrained optimisation

Conclusions: Graph generative models

I Despite promising results, still a lot of work left to be done!
I Enforcing validity without resorting to “hard stopping” is one

such property in the chemical domain.
I Scaling up to larger graphs is also paramount!

I Most of the push thus far has been by graph neural network
researchers—in my opinion, far more input (and likely bespoke
objectives for graphs) is needed from GAN experts.

Roadmap for today

Graph convolutional networks
GCN (Kipf & Welling, ICLR 2017)
MPNN (Gilmer et al., ICML 2017)
GAT (Veličković et al., ICLR 2018)

Generative models of graphs
MolGAN (De Cao & Kipf, ICML TADGM 2018)
GCPN (You et al., NeurIPS 2018)

Semi-supervised adversarial learning on graphs
I GraphSGAN (Ding et al., CIKM 2018)

Graph-based adversarial defence
I PeerNets (Svoboda et al., ICLR 2019)

Node classification

I We will now focus on the node classification problem:
I Input: a matrix of node features, X ∈ RN×F , with F features in

each of the N nodes, and an adjacency matrix, A ∈ RN×N .
I Output: a matrix of node class probabilities, Y ∈ RN×C , such

that Yij = P(Node i ∈ Class j).

I Can be seen as traditional deep learning, with relations
between training set elements.

Transductive learning on graphs

Training algorithm sees all features (including test nodes)!

Towards a generative solution

I The predictions of the model may be highly dependent on
where the labelled nodes are in the graph!

I Consider this failure case of simple label propagation:

The algorithm can be very sensitive to bridges!

GraphSGAN (Ding et al., CIKM 2018)

I Generate artificial nodes to fill the density gap!
I Problem: How to connect the new nodes?
I To solve this, we will need to make a brief detour. . .

Inserting structure: DeepWalk

I An alternative to using a graph convolutional network is first
learning some structural features, ~Φi , for each node i (these
will not depend on ~xi , but on the graph structure)!

I Then, use ~hi = ~xi‖~Φi as the input to a shared classifier (where
‖ is concatenation).

I Typically, random walks are used as the primary input for
analysing the structural information of each node.

I The first method to leverage random walks efficiently is
DeepWalk by Perozzi et al. (KDD 2014)

Overview of DeepWalk

I Start by random features ~Φi for each node i .

I Sample a random walkWi , starting from node i .

I For node x at step j , x =Wi [j], and a node y at step
k ∈ [j − w , j + w], y =Wi [k], modify ~Φx to maximise
logP(y |~Φx) (obtained from a neural network classifier).

I Inspired by skip-gram models in natural language processing:
to obtain a good vector representation of a word, its vector
should allow us to easily predict the words that surround it.

Overview of DeepWalk, cont’d

I Expressing the full P(y |~Φx) distribution directly, even for a
single layer neural network, where

P(y |~Φx) = softmax(~wT
y
~Φx) =

exp
(
~wT

y
~Φx

)
∑

z exp
(
~wT

z
~Φx

)
is prohibitive for large graphs, as we need to normalise across
the entire space of nodes—making most updates vanish.

I To rectify, DeepWalk expresses it as a hierarchical softmax—a
tree of binary classifiers, each halving the node space.

DeepWalk in action

Later improved by LINE (Tang et al., WWW 2015) and node2vec
(Grover & Leskovec, KDD 2016), but main idea stays the same.
GraphSGAN uses LINE.

DeepWalk meets GANs

I LINE features can be precomputed for every node in the
original graph and attached to their main features.

I GraphSGAN avoids the issue of having to connect new nodes
by generating both node features and LINE-like features!

I That is, its generator, Gθ, produces node features ~̂hi as follows:

~z ∼ p(~z)

~̂hi = Gθ(~z)

where ~̂hi = ~̂xi‖
~̂
Φi , so the generator encodes the local graph

structure of i without having to explicitly generate it!

GraphSGAN generator/discriminator

I As all nodes are represented as flat feature vectors (which
encodes the graph structure), we do not need to use graph
convolutional networks!

I Indeed, GraphSGAN uses MLPs for Gθ and Dφ. The
discriminator shares all of its parameters with the downstream
node classifier (by adding an extra class, PM , for “fake”)!

Overview of GraphSGAN

Expected outcome of training

Choose objectives to enforce such behaviour!

Objectives on the discriminator

I Map differently-classed nodes to different clusters.
I Naturally optimised using the standard cross-entropy loss on the

labelled nodes:

LCE = −E~hi∼pdata
logP(yi |~hi , yi < M)

I Real nodes should not be mapped into the “central” area (to
expose the gaps).

I Assuming the generator perfectly generates samples in the
density gap, then the original GAN loss will enforce this:

LGAN = −E~hi∼pdata
log(1− P(M|~hi))− E~̂hi∼G(~z)

logP(M|~̂hi)

Objectives on the discriminator, cont’d

I Each unlabelled node should be mapped into one cluster.
I Enforced by requiring a “confident” classifier; i.e. penalising the

entropy over the non-fake classes:

Lent = −E~hi∼pdata

M−1∑
y=0

P(y |~hi , yi < M) logP(y |~hi , yi < M)

I Clusters should be as distant from each other as possible.
I Add a pull-away penalty within a batch of m examples (as used

in EBGAN; Zhao et al., 2017) to enforce this:

Lpull =
1

m(m − 1)

m∑
i=1

∑
j 6=i

(
~hT

i
~hj

‖~hi‖‖~hj‖

)2

GraphSGAN discriminator objective

I Finally, the GraphSGAN discriminator/classifier is optimised
with respect to all four of these losses simultaneously:

LD = LCE + λ0LGAN + λ1Lent + λ2Lpull

I We now turn our attention to the generator. . .

Objectives on the generator

I Map fake samples into the “central area”.
I Enforce with a feature matching loss; make generated nodes not

deviate too far from the centroid of real nodes:

Lfm = −‖E~hi∼pdata

~hi − E~̂hj∼G(~z)
~̂hj‖2

I Fake samples should not overfit to the centroid!
I Use another pull-away term to enforce this.

I The generator is optimised using these two additional losses:

LG = Lfm + λLpull

Datasets used

Dataset Nodes Edges Features Classes Labels

Cora 2,708 5,429 1,433 7 140
Citeseer 3,327 4,732 3,703 6 120

DIEL 4,373,008 4,464,261 1,233,597 4 3413.8

Results on Cora/Citeseer

Method Cora Citeseer

LP 68.0 45.3
ICA 75.1 69.1

ManiReg 59.5 60.1

DeepWalk 67.2 43.2
SemiEmb 59.0 59.6
Planetoid 75.7 64.7

Chebyshev 81.2 69.8
GCN 80.1 ± 0.5 67.9 ± 0.5
GAT 83.0 ± 0.7 72.5 ± 0.7

GraphSGAN 83.0 ± 1.3 73.1 ± 1.8

Results on DIEL

Method Recall@K

LP 16.2
ManiReg 47.7

DeepWalk 25.8
SemiEmb 48.6
Planetoid 50.1

DIEL 40.5

GraphSGAN 51.8

Upper bound 61.7

Conclusions: Semi-supervised adversarial learning

I GANs clearly have a lot of potential for improving performance
of semi-supervised learning on graphs!

I DeepWalk-like features discard a lot of fine-grained information
about the structure; yet, performance exceeds that of methods
that have access to the entire adjacency matrix.

I Clearly, future work should focus on appropriately rewiring the
generated nodes rather than resorting to generating synthetic
structural features.

I And, as before, more informed GAN objectives. . .

Roadmap for today

Graph convolutional networks
GCN (Kipf & Welling, ICLR 2017)
MPNN (Gilmer et al., ICML 2017)
GAT (Veličković et al., ICLR 2018)

Generative models of graphs
MolGAN (De Cao & Kipf, ICML TADGM 2018)
GCPN (You et al., NeurIPS 2018)

Semi-supervised adversarial learning on graphs
GraphSGAN (Ding et al., CIKM 2018)

Graph-based adversarial defence
I PeerNets (Svoboda et al., ICLR 2019)

Graph-based adversarial defence

I Lastly, I will focus on how graph methods can be used to aid
defence against adversarial attacks.

I We will consider the usual image classification task:
I Deployed on standard image datasets (MNIST and CIFAR).
I Using standard convolutional classifiers (LeNet and ResNet).

I Utilise adversarial attacks such as the gradient descent attack,
FGSM (Goodfellow et al., 2015) and universal adversarial
perturbations (Moosavi-Dezfooli et al., 2016) to attempt to fool
the classifier.

Towards a “peer-knowledge” layer

I Adversarial attacks tend to fool the classifier by exposing it to
examples from a statistical distribution it wasn’t trained on.

=⇒ We can use “trusted” samples from the distribution to
strengthen the classification!

I This leads us to the peer regularisation (PR) layer, which can
be trivially plugged into CNNs, and will strengthen the
properties of the true data distribution in its feature maps.

The peer regularisation layer: Setup

I Assume we have a batch of N “peer” images, fed into a CNN.
At an intermediate stage of the CNN, we will have feature
maps (H1, . . . , HN); Hi ∈ Rh×w×d , for each one of them.

I Now, if we wish to classify a new image, we would feed it into
the CNN as usual, and obtain its intermediate feature map, H.
For each pixel p of H, let ~hp ∈ Rd denote its features.

I We locate the K nearest neighbours of ~hp, across all pixels of
Hi . Denote these as ~hq1 ,

~hq2 , . . . ,
~hqK .

I N.B. Due to the structural biases of a CNN, these pixels actually
encode similar patches!

The peer regularisation layer: Computation

I Now, compute the output pixel value at p as a weighted
average over the nearest neighbours:

~h′p =
K∑

k=1

αik
~hqk

I Here, the coefficients αik are computed as a byproduct of an
attention mechanism—i.e. using the GAT update rule.

eik = a(~hp, ~hqk)

αij =
exp(eij)∑

k∈Ni
exp(eik)

PeerNets (Svoboda et al., ICLR 2019)

Results: Gradient descent attacks

I For the gradient descent attack method at ε = 0.1:
I Targeted (trying to perturb arbitrary CIFAR-10 test images into

the “cat” class). Reduces fooling rate of ResNet-32 (from 16% to
3%), and increases the magnitude of the required attack (from
125.59 to 176.83).

I Non-targeted (trying to perturb into any other class). Similarly,
reduces ResNet-32 fooling rate from 59% to 22%, and
magnitude of attack from 28.55 to 102.11.

I Analogous results observed for FGSM.

Gradient descent attacks: Samples

Gradient descent (targeted) FGSM (non-targeted)

Gradient descent attacks: More samples

Note how the PR-regularised networks cause adversarial examples
to be perceptibly tampered to the human eye!

Gradient descent attacks: Even more samples

Note how the PR-regularised networks cause adversarial examples
to be perceptibly tampered to the human eye!

Results: Universal adversarial perturbations

I Universal adversarial perturbations expose a perturbation
parameter, ρ. Results are measured for all datasets, at various
perturbations levels.

I PeerNets consistently provide a stronger defence from
adversarial examples, while only marginally sacrificing
accuracy!

Results: MNIST and CIFAR-100

Results: CIFAR-10

Results: CIFAR-10 samples

Conclusions: Graph-based adversarial defence

I Clearly, leveraging knowledge already existing in the training
set can strengthen a network in the presence of adversarial
attacks.

I Further work is certainly called upon—for scaling to larger
datasets, dealing with a wider variety of attacks, and exploiting
the neighbourhood graph in a better way.

I Once again, input from adversarial learning experts would be
very desirable!

Thank you!

Questions?
petar.velickovic@cst.cam.ac.uk

http://www.cst.cam.ac.uk/∼pv273/

http://petar-v.com/GAT

https://github.com/PetarV-/GAT

https://github.com/PetarV-/DGI

	Introduction

