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Abstract

Graph Neural Networks (GNNs) have been shown to be effective models for
different predictive tasks on graph-structured data. Recent work on their expressive
power has focused on isomorphism tasks and countable feature spaces. We extend
this theoretical framework to include continuous features—which occur regularly
in real-world input domains and within the hidden layers of GNNs—and we
demonstrate the requirement for multiple aggregation functions in this context.
Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel
architecture combining multiple aggregators with degree-scalers (which generalize
the sum aggregator). Finally, we compare the capacity of different models to
capture and exploit the graph structure via a novel benchmark containing multiple
tasks taken from classical graph theory, alongside existing benchmarks from real-
world domains, all of which demonstrate the strength of our model. With this work
we hope to steer some of the GNN research towards new aggregation methods
which we believe are essential in the search for powerful and robust models.
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How powerful are Graph Neural Networks?

e GNNs are a powerful tool for processing real-world graph data
o But they won't solve any task specified on a graph accurately!

e Canonical example: deciding graph isomorphism
o Am | able to use my GNN to distinguish two non-isomorphic graphs?
o (Permutation invariance mandates isomorphic graphs will be detected)

Graph 1 Graph 2
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Prior art (Xu et al., ICLR’19)

e We can relax the problem by looking first at distinguishing neighbourhoods

e For the case of discrete feature spaces, it is shown that aggregation function choice can
vastly influence the expressive power:

e o o o _ -
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Prior art (Xu et al., ICLR’19)

e We can relax the problem by looking first at distinguishing neighbourhoods

e For the case of discrete feature spaces, it is shown that aggregation function choice can
vastly influence the expressive power:
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(a) Mean and Max both fail (b) Max fails (c¢) Mean and Max both fail

e |t appears that sum is a very important primitive! @



Optimally expressive GNNs (Xu ef al., ICLR’19)

e The sum aggregation is, actually, injective in this context: it will never map two different
neighbourhoods to the same output!

Lemma 5. Assume X is countable. There exists a function f : X — R" sothat h(X) = Y f()
is unique for each multiset X C X of bounded size. Moreover, any multiset function g can be

decomposed as g (X) = ¢ (3 cx f(x)) for some function ¢.

e Combining sum aggregation with appropriately chosen message functions yields
optimally expressive GNNs in this setting.
o  Graph Isomorphism Network (GIN)
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Optimally expressive GNNs (Xu et al., ICLR’19)

e In fact, they showed that no spatial GNN can ever perform better than Weisfeiler-Leman:

Algorithm 1: WL-1 algorithm (Weisfeiler & Lehmann, 1968) *—

Input: Initial node coloring (h§°), hgo), -~ hg\(,)))

Output: Final node coloring (hgT), hgT), e hg\:,r)) . Vs

t<0; e

repeat o o o
for v; € V do " /N

L hEH—l) e Ty (Zje/\/’i hgt)); % = '

t+—t+1; ¢ 4

until stable node coloring is reached, e

e Several works try to propose works that go beyond 1-WL

0.00

-0.05

-0.10

-0.15

-0.15

-0.10 —-0.05 0.00 0.05

(b) Random weight embedding

o  Relational Pooling (Murphy et al, ICML'19), 1-2-3-GNN (Morris et al, AAAI'9), ...
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Notes on Xu et al.

e Does this mean max is useless? NO! Not all tasks are isomorphism.
o In practice, sum can cause exploding messages.
o Max dominates on right kinds of problems (e.g. sparse credit assignment / search)

(Richter and Wattenhofer. 2020)
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Notes on Xu et al.

e What happens when features are continuous? (real-world apps / latent GNN states)
o ..the proof for injectivity of sum (hence GINs’ expressivity) falls apart
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Which is best? Neither.

e There doesn’t seem to be a clear single “winner” aggregator here..

e Infact, we prove that there isn’t one!

Theorem 1 (Number of aggregators needed). In order to discriminate between multisets of size n
whose underlying set is R, at least n aggregators are needed.

e The proof is (in my opinion) really cool! Borsuk-Ulam Theorem

(relies on Borsuk-Ulam theorem) s

that we'll use to solve it, called the Borsuk-Ulam
theorem, but trust me, seeing these two seemingly

Sneaky Topology | The Borsuk-Ulam theorem and stolen necklaces

409,715 views * Nov 18,2018 14K 110 SHARE SAVE
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The proof

Proof. Let S be the n-dimensional subspace S of R™ formed by all tuples (z1, xs,...,Z,) such that
1 <x9 <...<uzx,,and notice how S is the collection of the aforementioned multisets. We defined
an aggregator as a continuous function from multisets to reals, which corresponds to a continuous
functiong : § — R.

Assume by contradiction that it is possible to discriminate between all the multisets of size n using
only n — 1 aggregators, viz. g1,92,...,9n—1-

Define f : S — R™! to be the function mapping each multiset X to its output vector
(91(X), g2(X), ... ,gn—1(X)). Since g1,92,...,9n—1 are continuous, so is f, and, since we
assumed these aggregators are able to discriminate between all the multisets, f is injective.

As S is a n-dimensional Euclidean subspace, it is possible to define a (n — 1)-sphere C™~! entirely
contained within it, i.e. C*~! C S. According to Borsuk—Ulam theorem [34, 35], there are two
distinct (in particular, non-zero and antipodal) points #1,Z> € C™~ ! satisfying f(Z1) = f(Z2),
showing f not to be injective; hence the required contradiction. [
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Okay, but what are these n aggregators?

e Multiset moments work!

Proposition 1 (Moments of the multiset). The moments of a multiset (as defined in Equation 4)
exhibit a valid example using n aggregators.

Mn(X) = VE[(X -p] , n>1

e N.B. This covers aggregators like mean, standard deviation, ...
o And could explain why max works well at times:

max and min together form an estimate of Meo! (similar insights in Adamax)

e We don’t prove that moments are always the optimal choice...
o But do prove that they satisfy the theoretical constraints for neighbour isomorphism
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Moments and scalers

e Note that we've excluded previously useful aggregators like sum
o Consider an interesting observation: sum ~ mean o degree scaler!
o Also consider logarithmic and exponential scalers, to highlight hubs and authorities

log(d +1)\“
5 Y

S(d,a) =

e Adding higher-order moments could quickly lead to numerical instability
o Have to take n-th powers followed by n-th roots...
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Principal Neighbourhood Aggregation (PNA)

e With all of the above in mind, we propose Principal Neighbourhood Aggregation
o arobust aggregation scheme which incorporates the necessary principles

I e
@ = | S(D,a=1) || °
1ImMax
\S(D,a = —1)J in
scglrers ~—
aggregators

e Stitch into your favourite GNN model and you're all set!

xH =u | x0, @ M(xP,x{)
(] 7 Y 12 9 j
(G)€E
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log,, MSE

PNA on synthetic graph property prediction
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L1 GIN
0 GCN
GAT
MPNN (max)
MPNN (sum)
PNA (no scalers)
L1 PNA

PNA -3.13 |-2.89|-2.89 |-3.77 |-2.61 | -3.04 | -3.57

PNA (no scalers) | -2.77 |-2.54|-2.42-2.94 (-2.61 |-2.82 |-3.29
MPNN (sum) -2.53 |-2.36(-2.16|-2.59 (-2.54 | -2.67 | -2.87
MPNN (max) -2.50 |-2.33(-2.26|-2.37(-1.82|-2.69 |-3.52
GAT -2.26 |-2.34|-2.09 [-1.60|-2.44 | -2.40 | -2.70
GCN -2.04 (-2.16(-1.89 |-1.60|-1.69 |-2.14 | -2.79

GIN -199 |[-2.00|-1.90(-1.60|-1.61 (-2.17 | -2.66
Baseline -1.38 |-1.87|-1.50(-1.60 -0.62 |-1.30 | -1.41

1. Single-source shortest-paths
2. Eccentricity

3. Laplacian features

4., Connected
5. Diameter
6. Spectral radius
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log,, MSE
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Stability is important, max is relevant!
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PNA works in the real world

ZINC CIFAR10 MNIST
Model No edge features Edge features No edge features Edge features No edge features Edge features
ode MAE MAE Acc Acc Acc Acc
MLP 0.71040.001 56.01+0.90 94.4610.28
MLP (Gated) 0.681+0.005 56.781+0.12 95.18+0.18
GCN 0.469+0.002 54.4610.10 89.99+0.15
Dwivedi GraphSage 0.410+0.005 66.08+0.24 97.20+0.17
et al. GIN 0.408%0.008 53.28+3.70 93.96+1.30
paper DiffPoll 0.466+0.006 57.991+0.45 95.02+0.42
GAT 0.463+0.002 65.48+0.33 95.62+0.13
MoNet 0.407+0.007 53.42+0.43 90.36+0.47
GatedGCN 0.422+0.006 | 0.363+£0.009 | 69.19+0.28 69.37+0.48 97.37+0.06 97.47+0.13
MPNN (sum) 0.381+0.005 |0.288+0.002* [ 65.39+0.47 65.61+0.30 96.72+0.17 96.90+0.15
Bure MPNN (max) 0.468+0.002 |0.328+0.008* | 69.70+0.55 70.86+0.27 97.37+0.11 97.8210.08
PNA (no scalers) | 0.413+0.006 (0.247+0.036* | 70.4610.44 70.47%0.72 97.41+0.16 97.94+0.12
PNA 0.320+0.032 |0.188+0.004* | 70.21+0.15 70.35+0.63 97.19+0.08 97.69+0.22
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Key takeaways

One key way to measure GNN expressive power is neighbourhood isomorphism
o “Can the GNN layer distinguish neighbourhoods?”

When features are continuous, multiple aggregators are needed!
o Sum is no longer sufficient (and may often be inappropriate)!
o The n moments are one example of such aggregator set

e Combine a stable subset of moments with scalers => yield the PNA architecture
o Strong performance on synthetic and real-world benchmarks
o Can “latch-on” to the strongest aggregator

Designing strong aggregators still very much an open area of research!
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Goodies

e Paper @ arXiv:
https://arxiv.org/abs/2004.05718

Code @ GitHub:
https: ithub.com/lukecavabarrett/pna

Promo video @ ICML"20 GRL+:
https://slideslive.com/38931510/

Implementation @ PyTorch Geometric:

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.htm

lfftorch geometric.nn.conv.PNAConv
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DeepMind

Thank you!

Questions?

petarv@google.com | https://petar-v.com

In collaboration with Gabriele Corso, Luca Cavalleri, Dominique Beaini and Pietro Liod
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