
Generative Adversarial Networks
Petar Veličković

Artificial Intelligence Group
Department of Computer Science and Technology, University of Cambridge, UK

Pint of Science: I think, therefore AI 15 May 2018



Introduction

I In this talk, I will guide you through a high level overview of
Generative Adversarial Networks (GANs)—one of the most
popular ideas to hit deep learning in the past decade.

I This will involve a journey through the essentials of how neural
networks normally work. . .

I . . . followed by a dive into turning horses into zebras,
generating fake celebrities, and anecdotes about how
pints can lead to wonderful science.



Motivation: notMNIST

I Which characters do you see? (How did you conclude this?)

I Imagine someone asked you to write a program that
recognises characters from arbitrary glyphs. . .



Intelligent systems

I Although the previous task was likely simple to you, you
(probably) couldn’t turn your thought process into a concise
sequence of instructions for a program!

I Unlike a “dumb” program (that just blindly executes
preprogrammed instructions), you’ve been exposed to a lot of A
characters during your lifetimes, and eventually “learnt” the
complex features making something an A!

I Desire to design such systems (capable of generalising from
past experiences) is the essence of machine learning!

I How many such systems do we know from nature?



Specialisation in the brain

I We know that different parts of the brain perform different tasks:

I There is increasing evidence that the brain:
I Learns from exposure to data;
I Is not preprogrammed!



Brain & data

I The majority of what we know about the brain comes from
studying brain damage:

I Rerouting visual inputs into the auditory region of baby ferrets
makes this region capable of dealing with visual input!

I As far as we know (for now), the modified region works equally
good as the visual cortex of healthy ferrets!

I If there are no major biological differences in learning to
process different kinds of input. . .

I =⇒ the brain likely uses a general learning algorithm, capable
of adapting to a wide spectrum of inputs.

I We’d very much like to capture this algorithm!



A real neuron!



An artificial neuron!

Within this context sometimes also called a perceptron (. . . )

Σ

+1

x1

x2

x3

xn

b
w

1

w2

w3

w n

(
b +

n∑
i=1

wixi

)

...

We train the neuron by exposing it to many (~x , y) examples, and
then adjusting ~w and b to make its output close to y when given ~x
as input.



Neural networks and deep learning

I It is easy to extend a single neuron to a neural network—simply
connect outputs of neurons to inputs of other neurons.

I Typically we organise neural networks in a sequence of layers,
such that a single layer only processes output from the
previous layer.

I By extension from a single neuron, we train the neural network
by exposing it to many input-output pairs, and appropriately
adjusting the parameters of all the neurons.



Multilayer perceptrons

The most potent feedforward architecture allows for full connectivity
between layers—sometimes also called a multilayer perceptron.

Σ σ

+1

x1

x2

x3

xn

b
w

1

w2

w3

w n

σ

(
b +

n∑
i=1

wixi

)

...

I1

I2

I3

Input
layer

Hidden
layer

Output
layer

O1

O2



Neural network depth

I I’d like to highlight a specific parameter: the number of hidden
layers, i.e. the network’s depth.

I What do you think, how many hidden layers are sufficient to
learn any “useful” function?

I One! (Cybenko’s theorem, 1989.)

I However, the number of neurons in this layer would need to be
astronomical for almost all problems we care about.

I We must go deeper. . .
I Every network with > 1 hidden layer is considered deep!
I Today’s state-of-the-art networks often have over 150 layers.



Neural network depth

I I’d like to highlight a specific parameter: the number of hidden
layers, i.e. the network’s depth.

I What do you think, how many hidden layers are sufficient to
learn any “useful” function?

I One! (Cybenko’s theorem, 1989.)

I However, the number of neurons in this layer would need to be
astronomical for almost all problems we care about.

I We must go deeper. . .
I Every network with > 1 hidden layer is considered deep!
I Today’s state-of-the-art networks often have over 150 layers.



Neural network depth

I I’d like to highlight a specific parameter: the number of hidden
layers, i.e. the network’s depth.

I What do you think, how many hidden layers are sufficient to
learn any “useful” function?

I One! (Cybenko’s theorem, 1989.)

I However, the number of neurons in this layer would need to be
astronomical for almost all problems we care about.

I We must go deeper. . .
I Every network with > 1 hidden layer is considered deep!
I Today’s state-of-the-art networks often have over 150 layers.



Deep neural networks

I3I2I1

O2O1

×∞



Quiz: What do we have here?



DeepBlue vs. AlphaGo

I Main idea (roughly) the same: assume that a grandmaster is
only capable of thinking k steps ahead—then generate a
(near-)optimal move when considering k ′ > k steps ahead.

I DeepBlue does this exhaustively, AlphaGo sparsely (discarding
many “highly unlikely” moves).

I One of the key issues: when stopping exploration, how do we
determine the advantage that player 1 has?

DeepBlue: Gather a team of chess experts, and define a function
f : Board → R, to define this advantage.

AlphaGo: Feed the raw state of the board to a deep neural network, and
have it learn the advantage function by itself.

I This highlights an important paradigm shift brought about by
deep learning. . .



Feature engineering

I Historically, machine learning problems were tackled by
defining a set of features to be manually extracted from raw
data, and given as inputs for “shallow” models.

I Many scientists built entire PhDs focusing on features of interest
for just one such problem!

I Generalisability: very small (often zero)!

I With deep learning, the network learns the best features by
itself, directly from raw data!

I For the first time connected researchers from fully distinct areas,
e.g. natural language processing and computer vision.

I =⇒ a person capable of working with deep neural networks
may readily apply their knowledge to create state-of-the-art
models in virtually any domain (assuming a large dataset)!



Representation learning

I As inputs propagate through the layers, the network captures
more complex representations of them.

I It will be extremely valuable for us to be able to reason about
these representations!

I Typically, models that deal with images will tend to have the
best visualisations.



Passing data through the network: Input

I3I2I1

O2O1



Passing data through the network: Shallow layer

I3I2I1

O2O1



Passing data through the network: Deep layer

I3I2I1

O2O1



Passing data through the network: Output

I3I2I1

O2O1



We’re good at detecting what’s in an image. . .



. . . even exceeding human performance. . .



. . . or are we???



The importance of understanding data



Generative modelling

“What I cannot create, I do
not understand.”—Richard Feynman



Generative Adversarial Networks

I “The most important one, in my opinion, is adversarial training
(also called GAN for Generative Adversarial Networks). This,
and the variations that are now being proposed is the most
interesting idea in the last 10 years in ML, in my opinion.”
—Yann LeCun
(Director of Research, Facebook AI Research)



GANs are everywhere



The generator

I Imagine that we had a neural network, G, capable of
generating new data from random inputs ~z.. . .

~z ~x
G(~z)

generator
noise

We will call this neural network the generator.

I What we want to do is make the output of this generator match
the properties of real data.

I But how can we check if a synthetic input has properties similar
to real data?



The discriminator

I Checking for properties by looking over full data (e.g. individual
image pixels) is hard.

I We can utilise a neural network to extract underlying features
from inputs, and examine those.

I If these features are “good enough”, the network should be
capable of telling real and synthetic inputs apart!

I Call this network the discriminator, D(~x).

I Essentially, a binary classifier, telling whether ~x is real or
synthetic. N.B. The discriminator effectively specifies the
error that we want the generator to minimise!



The GAN framework (Goodfellow et al., 2014)

~z ~xfake
G(~z)

generator
noise

~xreal
real data

~x real?
D(~x)

discriminator

Two neural networks playing a game. . .
Alternate updating their weights; hopefully they improve together!



The GAN framework—update step 1

~z ~xfake
G(~z)

generator
noise

~xreal
real data

~x real?
D(~x)

discriminator

Train discriminator to say ‘real’ on real data.



The GAN framework—update step 2

~z ~xfake
G(~z)

generator
noise

~xreal
real data

~x real?
D(~x)

discriminator

Train discriminator to say ‘fake’ on fake data.



The GAN framework—update step 3

~z ~xfake
G(~z)

generator
noise

~xreal
real data

~x real?
D(~x)

discriminator

Train generator to make discriminator say ‘real’ on fake data.



The desired final outcome

min
G

max
D

V (D,G) = E~x∼pdata(~x)[log D(~x)] + E~z∼pθ(~z)[log(1− D(G(~z)))]

I Assuming everything goes well, concluding the training
process we obtain two very useful networks!

I The generator, G(~z), becomes capable of generating extremely
useful synthetic examples.

I The discriminator, D(~x), becomes a high-quality feature
extractor from data.

I Let’s see how good these synthetic examples from G(~z)
actually get. . .



Generating fake celebrities (Karras et al., 2018)



A step further—domain transfer

I Similar ideas can be applied in order to transform data from
one type to another. . .

I We learn two generators, GAB and GBA, to transfer inputs
from type A to type B, and vice-versa.

I We also learn the two discriminators, DA and DB.

I Besides the usual GAN game, we also can enforce cycle
consistency: GBA(GAB(~a)) ∼ ~a.

I This means that if we transform an input of type A to type B,
then transform the result back into type A, we should be able to
recover the original input.

We arrive at the remarkably powerful CycleGAN model. . .



Domain transfer: CycleGAN (Zhu et al., 2017)

~areal ~bfake

GAB(~a)

generator
(A→ B)

~arec
GBA(~b)

generator
(B → A)

real data
(type A)

~b real?
DB(~b)

discriminator
(type B)

~breal
real data
(type B)



Domain transfer: CycleGAN (Zhu et al., 2017)



Where did this all begin?



A true pint of science. . .



. . . credited in the paper.



An overview of historical deep learning ideas

I Initially, we needed to extract hand-crafted features before
applying a machine learning model to them.

I Deep neural networks can perform feature extraction by
themselves.

I Then, we needed to decide on how to estimate the error of our
network’s prediction.

I GANs use a neural network (the discriminator) to compute this!

I We need to figure out a correct way to reduce this error.
I Learn how to learn?



Thank you!

Questions?
petar.velickovic@cst.cam.ac.uk


	Introduction
	Multilayer perceptrons
	Representations
	Conclusion

