
Be nice to your neurons

Initialisation, Normalisation, Regularisation and Optimisation

Petar Veličković

Artificial Intelligence Group
Department of Computer Science and Technology, University of Cambridge, UK

COMPGI23—Introduction to Deep Learning, University College London 14 November 2017

Introduction

I In this lecture, I will cover several essential techniques that can
help simplify neural network training.

I These will primarily be techniques for making the network’s
actions more robust and generalisable, across every stage of
its layer pipeline. We will cover simple, commonly-used
methods as well as some ongoing bleeding-edge research.

I The title holds a double meaning: if you treat your networks
well, you’ll require less effort to properly optimise them! :)

A (rough) outline for today

1. Regularisation: Forcing our networks to find good parameters
while simultaneously being constrained in some other way
(hopefully, one that discourages parameter choices that overfit!)

2. Initialisation: Choosing initial parameters (“starting points” for
training) for the network in order to encourage good behaviour
in early stages of training.

3. Normalisation: Making sure that our network consistently
receives well-behaved signals (in terms of magnitudes and
statistics) at all stages of its processing pipeline.

4. Optimisation: Actually deciding how to use the computed
gradients to update the network parameters in a stable and
adaptive way.

Combatting overfitting

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y

Learning the sine function

Training set
Target
Linear fit
Degree-3
Degree-14

Last time I just said “beware”. . . now let’s see what we can do.

Regularisation

I Overfitting can often be alleviated using regularisation.

I Broadly speaking, regularisation corresponds to making the
model optimise the same problem, under additional constraints
that somehow restrict the set of parameters available to the
model during training.

I With proper regularisation, many deep learning models can
learn to fit the provided training data in a controllable fashion,
regardless of their nominal parameter count.

Early stopping

I Hyperparameters in a neural network are commonly optimised
by using the obtained loss on a validation set as a proxy.

I For arguably the least intrusive form of regularisation, we can
(re)use the validation set to learn the number of training
iterations as a hyperparameter.

I This leads us to the technique of early stopping, which is now
near-ubiquitously used across deep learning applications.

Early stopping: the essentials

I While training, keep track of the model parameters that
achieved the best validation loss so far.

I Stop training when the loss hasn’t improved for a set number of
iterations (the patience hyperparameter).

I Restore the best-performing model (and potentially evaluate it
on a testing dataset).

Early stopping in action

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

Iteration

Lo
ss

Training loss
Validation loss

Early stopping in action

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

Iteration

Lo
ss

Training loss
Validation loss
Stopping point

Early stopping: analysis

I We are basically assuming that validation performance will be
a good surrogate for testing performance.

I Very simple, and usually very effective (esp. if large valid. set)!

I Often desirable to use, as it does not require modifying
anything else about the training or model setup itself!

I Downsides include the cost of storing a copy of the parameters
(often negligible) and separating out a validation set (but can
retrain on it afterwards).

Early stopping: regularisation

I How exactly does early stopping regularise the model?
I Assume, for simplicity:

I Initial model parameters w;
I A fixed learning rate of η;
I That the learning is performed over τ iterations;
I Early stopping at the τ ′th iteration;
I That the maximal weight gradient is bounded by |gmax |.

I This means that, initially, each parameter is allowed to vary in
the range wi ± ητ |gmax |.

I However, an early stopped model’s parameters can only vary in
the range wi ± ητ ′|gmax |—this is a regularising constraint,
limiting the set of parameters reachable from w!

Early stopping in Keras

Simple to do using the EarlyStopping callback!

model.fit(X train, Y train, batch size=batch size,

epochs=num epochs, verbose=1, validation split=0.1,

callbacks=[EarlyStopping(monitor=’val loss’, patience=5)])

L2 regularisation

I Now, we turn our attention to a regulariser that directly restricts
the desirable values of weights.

I We do this by further constraining our loss function, L (e.g.
cross-entropy or squared error), by adding a penalty term,
which penalises weights that deviate too much from zero:

L̃(~x , ~y , ~w) = L(~x , ~y , ~w) +
λ

2
‖~w‖2

where λ is a hyperparameter.

I We have arrived at the L2 regularisation technique (also called
weight decay), as we seek to restrict the L2 norm of ~w .

Implication on training dynamics

I Recall the gradient descent update rule:

~w ← ~w − η ∂L
∂~w

I The gradient of the added L2 penalty is λ~w . Therefore:

~w ← ~w − η
(
∂L
∂~w

+ λ~w
)

~w ← (1− ηλ)~w − η ∂L
∂~w

I This forces the weight vector to shrink in magnitude at each
step, prior to applying the gradient update!

L2 regularisation: notes

I Nowadays, L2 regularisation has been somewhat abandoned in
favour of more recent ideas—but is still often very useful.

I Properly choosing λ is important!
I Too low: negligible effects;
I Too high: weights set to ~0.

I N.B. The regularisation effect would still be present if we
tended to a point other than the origin, i.e. if we optimised

L̃(~x , ~y , ~w) = L(~x , ~y , ~w) +
λ

2
‖~w − ~w ′‖2

but this is rarely done in practice (why?).

L2 regularisation in Keras

Simply attach a kernel regularizer to the model!
(N.B. we often do not regularise the bias, as it is less overfit-prone)

y = Dense(64, activation=’relu’,

kernel regularizer=regularizers.l2(0.0001))(x)

Aside: L1 regularisation

I While the L2 norm might have seemed like a natural choice to
optimise, nothing stops us from using a different (Lp) norm.

I Especially, L1 regularisation is another popular approach. In
this scenario we penalise the L1 norm:

L̃(~x , ~y , ~w) = L(~x , ~y , ~w) + λ
∑

i

|wi |

The gradient update is no longer as simple to analyse—but it
can be shown (details omitted) that this will force several
weights to be (near-)zero, sparsifying the model.

I This makes L1 regularisation useful for, among other things,
feature selection (cf. LASSO).

Ensemble methods

I While a final trained model may not perfectly generalise, we
may find that the exact nature of the faults it makes will depend
on the (stochastic) progress of the training procedure.

I This means that we could be able to extract better performance
if we train several models and average their predictions!

I This technique is known as ensembling.

An overview of the potential of ensembling

I Assume, for simplicity, that we are optimising a squared error
loss, and that model i makes error εi (with variance E(ε2i) = v
and covariance E(εiεj) = c).

I The error made by an average of k such models is 1
k
∑k

i=1 εi .
The expected squared error is then:

E

(1
k

k∑
i=1

εi

)2 =
1
k2E

 k∑
i=1

ε2i +
∑
j 6=i

εiεj

 =
1
k

v +
k − 1

k
c

I If errors are not fully correlated (c < v), this causes an
improved generalisation performance!

Bagging

I If we want to decorrelate our errors while ensembling a model
with the same hyperparameters (desirable!), a good technique
to use is bootstrap aggregating (bagging).

I Here we expose each copy of the model to a different dataset,
by sampling k examples from the training set with replacement.

I This means that, if the dataset size is unchanged (k = n),
approximately two-thirds of the examples will be present in the
resampled dataset (with the remainder replaced by duplicates).

Bagging in action (Goodfellow et al., 2016)

Notes on using ensembles

I Ensembling is a remarkably powerful technique—often
required for winning machine learning competitions.

I However, it should usually be avoided when benchmarking
machine learning algorithms (for scientific publications),
especially when comparing against single-model approaches.

I Lastly, note that not all ensembling methods are
regularisers—e.g. a technique called boosting will create
models with increased capacity.

Reliance on neurons

I When trained without additional constraints, neural networks
will tend to encourage highly specialised neurons.

I Even worse, there might be neurons that perform poorly, with
several other neurons there just to correct for its mistakes.

I Both of these make the network overly reliant on actions of
specific neurons, which generalises poorly (if only one neuron
fails, it might compromise many others!).

I =⇒ could be useful to force the network not to rely on the
existence of a neuron. . .

Dropout (Srivastava et al., 2014)

dropout ×
×

×

×

×

×

×

I Randomly “kill” each neuron in a layer with probability p, during
training only. Also scale the output of remaining neurons by

1
1−p , to preserve expected value.

Dropout in action (Srivastava et al., 2014)

An alternate look at dropout

I When using dropout, at each iteration a different model is used
(depending on which hidden units are dropped), by sampling
mask elements from a Bernoulli(p) distribution.

I This means that dropout can also be seen as a computationally
cheap way of creating a large ensemble of neural networks
(with 2n possibilities for n neurons).

I Although there is no formal proof for the fact that running the
full model at evaluation time preserves the required ensemble
properties, this technique performs really good in practice!

The ensembled networks (Goodfellow et al., 2016)

Notes on dropout

I Dropout is a very desirable method, given its high effectiveness
as a regulariser and favourable computational cost.

I Typically, good values of p lie in 0 ≤ p ≤ 0.5, but it is
sometimes possible to require even higher values.

I Rough rule-of-thumb:
I Fully-connected layers are the most prone to overfitting, and

applying dropout with p = 0.5 to their output is often appropriate.
I Overfitting is not as common with convolutional layers, but a

weaker dropout (p ≈ 0.25) applied there could still be helpful.
I Occasionally, it becomes useful to dropout inputs to the network.

I As dropout is turned off for validation/testing, note that the
training loss may not initially be better than validation loss!

Dropout in Keras

Extremely simple—just apply the Dropout layer!

x drop = Dropout(0.5)(x)

Aside: DropConnect (Wan et al., 2013)

I Generalises dropout by dropping weights rather than outputs.

I Harder to do both training (as it requires a different mask for
each example) and inference (requiring Gaussian moment
matching). However, some impressive results (MNIST SOTA)!

Concrete dropout (Gal et al., 2017)

I It is possible to relax the z ∼ Bernoulli(p) distribution to a
continuous version (the Concrete distribution):

z̃ = σ

(
1
t
· (log p − log(1− p) + log u − log(1− u))

)
where p is the dropout probability, u ∼ U(0,1), t is a
temperature parameter, and σ is the logistic sigmoid function.

I This is now differentiable by p—can learn the hyperparameter
directly by gradient descent!

I The technique is known as Concrete dropout.

Concrete dropout (Gal et al., 2017)

I The authors provide a ConcreteDropout wrapper for Keras,
which allows one to trivially apply it to any layer’s output:
y = ConcreteDropout(Dense(32, activation=’relu’))(x)

I The reference implementation may be found at:
https://github.com/yaringal/ConcreteDropout

Concrete dropout (Gal et al., 2017)

I Directly learning p from training data (requiring no validation
dataset) makes this technique very attractive for small-data
problems as well as reinforcement learning!

I The learnt values of the concrete dropout’s p do not always
coincide with manual tuning results! (e.g. for an
encoder-decoder network for image segmentation:)

Data augmentation

I As mentioned in my Week 2 lecture, the best way to improve a
network’s generalisation performance is to gather more training
data—but this is not always feasible!

I A simple manner of gathering more data is randomly
transforming the training inputs in a way that makes predictable
changes to the ground-truth outputs.

I Most commonly, for classification problems we can choose
transformations that do not change the class.

I We arrive at the common technique of data augmentation.

Data augmentation in computer vision

I This technique is best visualised (and most commonly applied)
on an image classification dataset:

I Applying random shifts/scales/rotations/crops/. . . to the input
image will usually not change the object class of the image!

I Careful with some transformations (such as horizontal flips).

I Now the network will never see the same example twice during
training—significantly lowering the potential for overfitting.

I Furthermore, it will be encouraged to learn to be resistant to
such perturbations in the input!

Data augmentation in action

(Image) Data augmentation in Keras

Make advantage of the ImageDataGenerator class!

datagen = ImageDataGenerator(width shift range=0.1,

height shift range=0.1, rotation range=10)

model.fit(...)

model.fit generator(datagen.flow(

X train, y train, batch size=32),

steps per epoch=len(X train) / 32, epochs=100)

Being nice to our signals

I We will now focus on techniques that are primarily designed to
make our data representations more convenient to work with
as the data passes through the network.

I As such, they’re not designed with regularisation in mind—but
many of them end up being useful regularisers nonetheless!

Input normalisation

I To avoid numerical issues with signals of overly large
magnitude or variance, it is almost-always helpful to normalise
the input of the network to have more controlled statistics.

I Typically, this can be done by computing the sample means, ~µ,
and sample standard deviations, ~σ, across each feature within
the training set, and transforming the input data, x , by

x̃i =
xi − µi

σi

I Note that we cannot observe the test data, so the same
values of ~µ and ~σ are used for evaluating!

I Many of the techniques to follow will assume that we’ve
normalised our inputs!

Network initialisation

I We now revisit a problem explored in Week 2—appropriately
initialising network weights.

I We’ve shown how unsupervised pre-training can be a good
initialiser (albeit costly in terms of the added training time).

I Since then, such methods have largely been replaced with
drawing initial weights from carefully crafted probability
distributions.

I These often perform equivalently or better to unsupervised
pre-training, for only a fraction of the effort.

Initialisation in Keras

I We will usually draw each weight from the uniform or normal
distribution centered at zero, i.e. U(−x , x) or N (0, σ).

I Thus far, no significant difference in the two has been found.
I We only need to specify the standard deviation, σ!

I Usually initialise biases to zero.

I Keras will allow us to specify the initialiser using the
kernel initializer parameter:
y = Dense(64, activation=’relu’,

kernel initializer=’ones’)(x)

LeCun initialisation (LeCun et al., 1998)

I An early development towards such initialisers is the LeCun
initialisation. Consider what happens to the variance of a linear
neuron’s output, assuming its weights wi and inputs xi are
uncorrelated and zero-mean:

Var

(nin∑
i=1

wixi

)
=

nin∑
i=1

Var(wixi)

=

nin∑
i=1

Var(W)Var(X) = ninVar(W)Var(X)

where nin is the fan-in—the number of inputs to the neuron.
I This approximation is appropriate for sigmoid activations as

well (as they’re roughly linear in their unsaturated region).

LeCun initialisation (LeCun et al., 1998)

I Typically, we will want to choose our weights to preserve the
variance of the input signal as it passes through the network.

I This implies that we should set

Var(W) =
1

nin

I Use ’lecun uniform’ or ’lecun normal’ in Keras.

I To make it work nicely for deeper networks, we will need
another constraint. . .

Xavier initialisation (Glorot and Bengio, 2010)

I Signals do not just go forward in a network—they are also
propagated backwards when computing gradients!

I During this procedure, a neuron will accumulate gradients from
the neurons it directly sends output to, scaled by the relevant
weights. Let nout be the fan-out—the number of such neurons.

I A similar argument as before now mandates we should set

Var(W) =
1

nout

in order to preserve the variance of the gradient update signals.

Xavier initialisation (Glorot and Bengio, 2010)

I Typically, we cannot satisfy both constraints simultaneously.
Xavier initialisation instead aims for their average:

Var(W) =
2

nin + nout

I Now a ubiquitously used initialisation scheme.

I Use ’glorot uniform’ (default!) or ’glorot normal’ in
Keras.

He initialisation (He et al., 2015)

I We’ve thus far assumed a linear layer. This was somewhat
okay for sigmoid activations, but not for ReLU (which is most
commonly used)!

I He initialisation rectifies the analysis to take into account the
behaviour of ReLUs (details omitted), obtaining:

Var(W) =
2

nin

I Enabled surpassing human performance on ImageNet!

I Use ’he uniform’ or ’he normal’ in Keras.

Orthogonal initialisation (Saxe et al., 2014)

I An alternate approach to initialising is to not initialise weights
independently from one another—this may be helpful in
obtaining some desirable properties.

I The best-known example of this is orthogonal initialisation,
which constrains the initial weight matrix W to be orthogonal,
i.e. WT W = I.

I This has two desirable properties:
I The transformation is norm-preserving, i.e. ‖W~x‖ = ‖~x‖—this

helps combat vanishing/exploding gradients early on.
I Its columns are orthonormal, i.e. ~wT

i ~wj = δij—this encourages
the network to learn varied input features.

I Use ’orthogonal’ in Keras.

LSUV (Mishkin and Matas, 2015)

I Perhaps the best approach to initialisation is one that is
data-driven—tuned to the features of the input data. One
interesting development in this direction is Layer-sequential
unit variance (LSUV) initialisation.

I Initialise layer-by-layer, starting with an orthogonally-initialised
weight matrix, then tuning on minibatches of training data until
the variance of the layer’s output signals becomes close to 1.

LSUV (Mishkin and Matas, 2015)

Internal covariate shift

I Thus far, we’ve focussed our attention at making the input
signal well-behaved, and, initially, making it propagate through
the network nicely in both directions.

I However, as training progresses, especially for deeper
networks, it is to be expected that weights are pushed in a
direction that will change the intermediate layer statistics—an
effect known as the internal covariate shift.

I This internal covariate shift is an important problem in deep
networks, since any neuron deeper in the network needs not
only to do its job properly, but also to adapt to inputs that are
changing over time.

Internal covariate shift, visualised

The solution is quite simple—renormalise periodically!

Batch normalisation (Ioffe and Szegedy, 2015)

I The first—and still by far most widely used—approach to
reducing internal covariate shift is renormalising the signal
across each training minibatch (batch normalisation).

I Let the outputs of the current layer across the current batch be
B = {x1, . . . , xm}. Then:

µB =
1
m

m∑
i=1

xi σ2
B = 1

m

m∑
i=1

(xi − µB)2

x̂i =
xi − µB√
σ2
B + ε

yi = γx̂i + β

where γ and β are trainable (allowing the network to revert)!
I Now ubiquitously used for training deep architectures.

Notes on batch normalisation

I At test time, use the entire training set’s statistics to fix
parameters of µ and σ (usually as a moving average):

µ← µ+ α(µB − µ) σ ← σ + α(σB − σ)

I Regularises the network! Similarly to data augmentation, the
signals the network will see will rarely repeat (as signals for
one example now depend on its entire minibatch)!

I Sometimes applied to the inputs of the network directly as a
substitute for preprocessing!

I Simple to include in a Keras model, by leveraging the
BatchNormalization layer:
y = BatchNormalization()(x)

Limitation of batch normalisation

I One issue of batch normalisation is its dependence on
minibatch statistics.

I This makes the technique harder to apply in, e.g.:
I online learning, where batch size is forced to be 1;
I working with variable-length inputs and RNNs;
I noise-sensitive applications such as reinforcement learning.

I We will now survey a few recently proposed techniques for
overcoming this issue.

I There does not seem to be a clear consensus on which
technique is best to use in these circumstances—attempting
several of them is the best approach for a new problem.

Layer normalisation (Ba et al., 2016)

I Under the intuition that changes in output of one layer will tend
to cause highly correlated changes in the summed inputs for
the next layer, layer normalisation proposes normalising all
signals across the layer, for a single training example:

µl =
1
H

H∑
i=1

ai σ2
l =

1
H

H∑
i=1

(ai − µl)
2

where H is the number of neurons in the layer, and ai is the
output of the i-th neuron.

I This is followed by a learnable scale and shift, as in batch
normalisation. N.B. each example is normalised independently!

Weight normalisation (Salimans and Kingma, 2016)

I Weight normalisation proposes to speed up the optimisation
procedure of neural networks by making the norm of their
weights explicitly trainable.

I This is achieved through the following reparametrisation:

~w =
g
‖~v‖

~v

where g and ~v are trainable by gradient descent.
I A data-driven methodology is also suggested to initialise

g = 1√
Var
(

~v·~x
‖~v‖

) , after fixing an initial ~v , across a single training

minibatch of layer inputs ~x .

Batch renormalisation (Ioffe, 2017)

I Proposes an extension to break the discrepancy of training and
inference transformations of batchnorm.

I As before, compute µ and σ as moving averages of µB and σB,
and use those for inference.

I During training, introduce a correcting scale and shift, which
compensates for the discrepancies of µ and σ to µB and σB:

xi − µ
σ

=
xi − µB
σB

· r + d

This implies that r = σB
σ ,d = µB−µ

σ . In practice, the values of r
and d are clipped (initially fixing them to 1 and 0, respectively,
and progressively widening the range of allowed values).

Residual connections (He et al., 2015)

I Training very deep networks has been very problematic for
many years. Batch normalisation is only one of the many
techniques that have helped significantly simplify the process in
recent years.

I Another remarkable technique are residual (skip) connections,
which enabled a 152-layer network to win the ImageNet
competition in 2015.

I Key observation: stacking too many layers limits not only
validation, but also training performance!

I But, if the added layers are useless, the network could just be
encouraged to make them compute the identity function!

Residual connections (He et al., 2015)

I Essentially, allows the input to additively shortcut to a latter
stage of the network’s pipeline.

I Lets the network effectively choose its own depth. . . a very
powerful and versatile concept!

Residual networks (He et al., 2015)

https://github.com/fchollet/keras/blob/master/keras/

applications/resnet50.py

Advanced ReLU activations: PReLU

I To conclude this section, we will cover two kinds of activation
functions that are more general versions of the ReLU function,
and have seen considerable usage in recent years.

I The parametric ReLU (PReLU), proposed by He et al., allows
for some (learnable) amount of output signal for negative input
values:

PReLU(xi) =

{
xi xi > 0
aixi xi ≤ 0

Here, ai are learnable parameters—one per each feature.

Advanced ReLU activations: ELU

I Another substantial development in the field of activation
functions is the exponential linear unit (ELU), proposed by
Clevert et al.

I The ELU extends the ReLU into the negative values:

ELU(x) =

{
x x > 0
α(exp(x)− 1) x ≤ 0

Here, α is a hyperparameter; often set to 1.

I Critically, unlike the PReLU, here the output of the function
saturates for too low values—keeping the negative signals
under control.

Advanced ReLU activations (Clevert et al., 2015)

Gradient descent optimisers

I We turn our attention to the learning algorithm employed to
train our neural networks.

I This area has seen significant improvement over the past
years, and has now completely simplified the training of many
common neural network models (often in conjunction with the
other regularising techniques already enumerated here).

I I will, for the most part, follow the brilliant overview by
Sebastian Ruder, which I highly recommend:
http://ruder.io/optimizing-gradient-descent/

Vanilla minibatch SGD

I Recall the standard minibatch stochastic gradient descent
framework:

~w ← ~w − η∂LB(~w)

∂~w
where LB is the loss on a sampled minibatch B of training
examples, and η the learning rate.

I N.B. SGD and backpropagation are different concepts!
Backpropagation is used to efficiently compute the gradients
∂LB(~w)
∂~w , whereas SGD is used to update the weights, assuming

the gradients are already computed.

Limitation of vanilla SGD

I Choosing a proper value of η can be notoriously difficult—with
poorly chosen values either significantly slowing down
convergence or hindering it.

I One way to address this issue is learning rate annealing, where
η starts with a larger value and is gradually reduced—but this
schedule needs to be set-up upfront, and therefore is unable
to adapt to the characteristics of the loss function’s surface.

I Furthermore, the same learning rate is used for updating all the
weights, which may be inappropriate (different weights may
require different scales)!

Recall: getting trapped in saddle points

Momentum (Qian, 1999)

I One very simple approach to improving the performance of
SGD is momentum—take a step in an accumulated direction:

~vt = γ~vt−1 + η
∂LB(~w)

∂~w
~w ← ~w − ~vt

where γ is a hyperparameter, often set to a value near 0.9.

I This has the effect of amplifying gradient updates in the
directions that are consistent across timesteps, and reducing
them in oscillating directions—speeding up convergence and
improving stability.

Effects of momentum

Without momentum With momentum

Vanilla SGD + momentum is still widely used in research, as it
provides a lot of control (at the expense of having to put in more

effort in optimising the learning rate schedule).

Nesterov accelerated gradient (Nesterov, 1983)

I Nesterov’s NAG method allows us to further improve the
“look-ahead” capability of momentum.

I Since we’re going to apply the γ~vt−1 update no matter what, we
might as well use this position to evaluate the gradient on:

~vt = γ~vt−1 + η
∂LB(~w − γ~vt−1)

∂~w
~w ← ~w − ~vt

I This prevents us from making too eager jumps, and increases
responsiveness.

Effects of NAG

Standard momentum: blue vector—compute the local gradient,
then take a big step in the direction of accumulated gradient.

Nesterov momentum: green vector—first take the step in the
direction of the accumulated gradient (brown vector), then correct
based on the local gradient there (red vector).

Momentum methods in Keras

I All the methods described so far can be deployed to a Keras
model by modifying the model’s compilation:
model.compile(loss=’categorical crossentropy’,

optimizer=SGD(lr=0.01, momentum=0.9, nesterov=True))

Adagrad (Duchi et al., 2011)

I First widely used method that adapts the learning rate for each
parameter individually.

I Let ~gt be a vector that holds the gradient at time t , i.e.
gt ,i = ∂L(~w)

wi
. Then AdaGrad modifies SGD by adapting the

learning rate for wi using historical gradient values:

wt+1,i ← wt ,i −
η√

Gt ,ii + ε
· gt ,i

where Gt is a diagonal matrix where Gt ,ii is the sum of squares
of gradients wrt wi until timestep t .

Adagrad: notes

I To use in Keras, set optimizer=’adagrad’.

I Intuition: weights that receive strong gradients less frequently
should receive a stronger learning rate to compensate.

I Benefit: no longer need to explicitly worry about the value of η;
often, setting it to a value like 0.01 is fine.

I Main weakness: values of G can only grow—learning rate
eventually vanishes!

Adadelta (Zeiler, 2012)

I Designed to address the aggressive learning rate decay of
Adagrad, Adadelta smooths the sum of squares of gradients
with exponential averaging:

E(~g2)t = γE(~g2)t−1 + (1− γ)~g2
t

where γ is once again chosen to be around 0.9.

I Replacing Gt with E(g2)t , we arrive at the following parameter
update (denoting the root mean square metric by RMS):

∆~wt = − η√
E(~g2)t + ε

~gt = − η

RMS(~g)t
~gt

Adadelta (Zeiler, 2012), cont’d

I The authors note that the parameters in the update rule do not
have the same units, so another exponential average (this time
over the parameter updates) is defined:

E(∆~w2)t = γE(∆~w2)t−1 + (1− γ)∆~w2
t

I Replacing the learning rate with the RMS of these updates up
to time t − 1 (as the update at time t is not immediately known)
yields the Adadelta update rule:

∆~wt = −RMS(∆~w)t−1

RMS(~g)t
~gt ~wt+1 ← ~wt + ∆~wt

I To use in Keras, set optimizer=’adadelta’.

RMSprop (Tieleman and Hinton, 2012)

I A method developed concurrently with Adadelta, with the same
aim of rectifying the issues of Adagrad. Presented for the first
time on Geoffrey Hinton’s Coursera course on Neural networks!

I In fact, equivalent to the first update rule of Adadelta!

~wt+1 ← ~wt −
η√

E(g2)t + ε
~gt

I To use in Keras, set optimizer=’rmsprop’.

Adam (Kingma and Ba, 2014)

I Adaptive moment estimation (Adam) is currently the most
popular adaptive optimisation algorithm.

I Computes two exponential averages: one of the gradients as
well as the squared gradients (as Adadelta and RMSprop did):

~mt = β1~mt−1 + (1− β1)~gt ~vt = β2~vt−1 + (1− β2)~g2
t

where β1 and β2 are hyperparameters (with default values of
0.9 and 0.999, respectively).

I These tend to be biased towards zero early on, so the following
bias-corrected values are recorded:

~̂mt =
~mt

1− βt
1

~̂vt =
~vt

1− βt
2

Adam (Kingma and Ba, 2014), cont’d

I Now, use ~̂mt as the gradient direction (similar to momentum!)
and ~̂vt to scale the learning rate (similar to RMSprop!).

~wt+1 ← ~wt −
η√
~̂vt + ε

~̂mt

We have arrived at the Adam update rule!

I To use in Keras, set optimizer=’adam’.

AdaMax (Kingma and Ba, 2014)

I Adam has used the L2 norm of the gradient updates to
compute ~vt—but using the Lp norm is also possible:

~vt = βp
2~vt−1 + (1− βp

2)|~gt |p ~ut = (~vt)
1/p

I While values of p > 2 are generally unstable, stable behaviour
re-emerges at L∞, yielding the simple AdaMax algorithm:

~u0 = ~0 ~ut = max(β2 · ~ut−1, |gt |) ~wt+1 ← ~wt −
η

~ut

~̂mt

I The max operator does not bias towards zero, and therefore
there is no need to compute a bias-corrected ~ut .

I To use in Keras, set optimizer=’adamax’.

Nadam (Dozat, 2016)

I As we noted, Adam leverages the ideas from both momentum
and RMSprop—how about adding Nesterov momentum?

I To simplify, we modify the steps of Nesterov
momentum—rather than using ~wt − β1

~̂mt−1 as a position to
compute gradients, we compute them at ~wt (as with ordinary
momentum), but take an additional step in the direction of β2

~̂mt
at the end!

I Integrating this into Adam’s update rule. . .

Nadam (Dozat, 2016)

I Expanding Adam’s update rule, we obtain:

~wt+1 ← ~wt −
η√
~̂vt + ε

(
β1~mt−1

1− βt
1

+
(1− β1)~gt

1− βt
1

)

= ~wt −
η√
~̂vt + ε

(
β1
~̂mt−1 +

(1− β1)~gt

1− βt
1

)

I Now, just replace ~̂mt−1 with ~̂mt (to do the “look-ahead” step as
per the previous slide) to obtain the Nadam update rule!

~wt+1 ← ~wt −
η√
~̂vt + ε

(
β1
~̂mt +

(1− β1)~gt

1− βt
1

)

Visualisation (credit: Alec Radford)

Adaptive methods generally outperform SGD—especially when it
comes to escaping saddle points.

Being nice to RNNs

I Recurrent neural networks are somewhat special:
I They have extensive weight sharing through time;
I They often have to cope with variable-length sequences;
I They may not have access to large batch sizes of data;
I . . .

I This introduces a specific set of tricks for optimising them. . .

I I will focus on the long short-term memory (LSTM) model here;
but many of these ideas will work on other cell types as well.

Recall: LSTM computational graph

new fts.

input gate

forget gate

output gate

~xt

~yt−1 × + σ × ~yt

×

M

~ct−1

~ct

LSTM

Recall: LSTM equations

~it = logistic
(

Wi~xt + Ui~yt−1 + ~bi

)
~ft = logistic

(
Wf~xt + Uf~yt−1 + ~bf

)
~ot = logistic

(
Wo~xt + Uo~yt−1 + ~bo

)
~ft t = tanh

(
Wft~xt + Uft~yt−1 + ~bft

)
~ct = ~ft t ⊗~it + ~ct−1 ⊗~ft
~yt = tanh

(
~ct
)
⊗ ~ot

gates

new features

update cell
output

LSTM initialisation (Jozefowicz et al., 2015)

I It is important to choose the initial parameter values to help the
LSTM learn effectively in the early stages!

I Sensible initialisations are (Keras does these automatically):
I U∗ with orthogonal initialisation (help combat vanishing

gradients even further; eigenvalues ∼ 1).
I ~bf = ~1 (to encourage long-term dependencies early on);
I Xavier initialisation (Glorot and Bengio (2010)) for all other

weights (recommended for sigmoid activations).

I For RNNs, the Adam (Kingma and Ba (2014)) and RMSProp
(Tieleman and Hinton (2012)) optimisation algorithms work
particularly well.

Dropout in LSTMs

LSTM1 LSTM1 LSTM1 . . . LSTM1

LSTM2 LSTM2 LSTM2 . . . LSTM2

Typically, it is safest to dropout non-recurrent connections only.
(Zaremba et al. (2014))

~x1 ~x2 ~x3 ~xT

~yT

~h0

~y0

× × × ×

×

~h1
~h2

~h3
~hT−1

. . .

×~h1 ×~h2 ×~h3 ×~hT

~y1 ~y2 ~y3 ~yT−1

Normalisation techniques

I Generally, batch normalisation may be less applicable, if
sequences will have a wide variety of lengths (as many entries
will end up missing, leading to weak approximations of the step
statistics).

I Techniques such as layer normalisation and weight
normalisation seem to rectify this situation well (albeit while
being a bit harder to control).

I Recurrent batch normalisation (Cooijmans et al., 2017)
batch-normalises the hidden-to-hidden connections of an RNN,
achieving solid results.

Bidirectional LSTM

I Very often, the dependencies within sequential data are not
just in one direction, but may be observed in both!

I Examples: DNA strands, words in a sentence, . . .

I Bidirectional layers exploit this by combining the features
obtained going in both directions simultaneously.

I Very simple to deploy in Keras (Bidirectional wrapper
around recurrent layers).

Bidirectional LSTM in action

. . . LSTM→ LSTM→ LSTM→ LSTM→ . . .

LSTM←LSTM←LSTM←LSTM←.

~x2 ~x3 ~x4 ~x5

~h5~h4
~h3~h2

~h→2 ~h→3 ~h→4

.

~h←3 ~h←4 ~h←5

Thank you!

Questions?
petar.velickovic@cst.cam.ac.uk

Special thanks:
César Laurent (Montréal Institute for Learning Algorithms)

Reading material:
‘Deep Learning’, Chapter 7 (Regularisation)

‘Deep Learning’, Chapter 8
(Initialisation, Optimisation, Normalisation)

‘Deep Learning’, Chapter 10 (RNN pointers)

	Introduction
	Regularisation
	Nice signals
	SGD optimisers
	Working with RNNs
	Conclusion

