
How to make a (GameBoy) emulator?

Petar Veličković

University of Cambridge
C�������� C����� S����� S�����

13 July 2016

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

What is emulation?

Emulation

I Emulation is a computer science concept corresponding to
imitation of one computer system on another.

I Contrast with simulation, which is just an imitation of a
particular feature/functionality (e.g. of a video game).

I Emulation can be performed in both hardware and so�ware;
in this talk, we will focus only on so�ware emulators.

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

What is emulation?

Emulator vs simulator

PSX emulator Pac-man simulator

An emulator executes the original code (ROM) wri�en for the console,
whereas the simulator represents an entirely new game.

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

History and specs of GameBoy

GameBoy

I The GameBoy is a video gaming console released by Nintendo
in 1989.

I First notable handheld console, in spite of technologically
superior competition:

I Together with its successor (Game Boy Color), sold over 119
million units (by far the most popular handheld console prior
to the release of the Nintendo DS).

I The Tetris cartridge alone sold 35 million copies!

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

History and specs of GameBoy

Console exterior

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

History and specs of GameBoy

Under the hood

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Overview of the GameBoy emulator

Today’s task

1100 0011 0000 1100

0000 0010 0000 0000

0000 0000 0000 0000

0000 0010 1111 1111

1111 1111 1111 1111

Cartridge GameBoy

ROM (Game code) Emulator

⇡ ⇡

insert

input

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Overview of the GameBoy emulator

Modular approach

I We will adopt a modular approach in our implementation – the
emulator will consist of (nearly) independent
implementations of all of its subsystems (⇠ modules)!

I Why do this?
I Debugging becomes much easier because the e�ects of

programmer errors are local to a subsystem.
I The modules may be reusable in other emulator projects – the

hardware is standardised.
I Amenable to object-oriented programming.

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Overview of the GameBoy emulator

Overview of the emulator

Processor

Interrupts

Memory
controller

Memory
ROM
RAM

Cartridge
reader

GPU SpritesInput

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Processor

Processor

Processor

I Usually the most involved and complex module in the emulator
implementation (which is why programmers usually tend to
use pre-made CPU implementations).

I Several approaches are possible—we will focus on writing an
interpreter, which “follows” the game code and simply
simulates every instruction it encounters using the local CPU.

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Processor

Interpreter emulator

IF
Instruction Fetch

DC
Decode

EX
Execute

I Interpreters usually simulate the fetch-decode-execute cycle,
present in most contemporary processors:
IF Instruction Fetch – fetch the current instruction;

DC Decode – determine the type of the instruction;
EX Execute – execute the current instruction, updating the state of

the processor, memory, etc.
I This way, we can only emulate systems whose processors are

several orders of magnitude slower than the native one.

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Processor

Instruction Fetch

IF
Instruction Fetch

I Where is our program???

I With GameBoy, and most contemporary systems, both the
code and data are stored in the same memory (⇠ von Neumann
architecture).

I =) We need methods for reading from and writing to
memory, if we’d like to be able to fetch the current instruction.

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Processor

Memory interface

I The GameBoy does all of its computations on the level of a
single byte; therefore, it makes sense to expose two methods:

ReadByte(address);
WriteByte(address, value);

to the CPU.

I For now, the processor only needs to know that these functions
exist—we will consider their actual implementations later.

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Processor

Decode

DC
Decode

I A�er fetching the current byte of the program, we need to
determine the instruction that it represents (and hence
whether we need to read additional parameters from memory).

I This requires us to be well acquainted with the instruction set
architecture (ISA) of GameBoy’s processor (which is very
similar to the Zilog Z80 ISA).

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Processor

GameBoy arhitecture

I Since we have read a single byte of our program as an
instruction, this allows us to consider 28 = 256 distinct
instructions.

I It is necessary to implement an enormous branching
(switch–case is an appropriate construct to use), which will
select the instruction to execute based on this byte’s value.

I This is easily the most cumbersome part of the
implementation. . .

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Processor

Execute

EX
Execute

I Each instruction may a�ect the processor’s internal state (⇠
registers), as well as the state of memory.

I Furthermore, every instruction requires a certain
(predetermined) number of CPU ticks/cycles (will be very
important later!).

I The previously mentioned WriteByte method may be used for
e�ects on memory.

I In order to implement all these instructions, we need to
implement and maintain the processor’s internal state as well.

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Processor

Processor state

The CPU’s current state is fully specified by the following registers:
PC Program Counter — the memory address of the next instruction

to be fetched;
SP Stack Pointer — the memory address of the top of the stack

(omi�ed from this talk);
F Flags;

A-E,H,L General purpose registers.

I We will also maintain the number of elapsed ticks since the
start of execution.

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Processor

Flags

I Flags are logical (true/false) variables that allow the
processor to determine the e�ects of the previously executed
instruction.

I With GameBoy, the flags register looks like this:
034567

ZF OF HCF CF

I The aforementioned flags are:
ZF Zero Flag — set if the result of the operation is zero;
OF Operation Flag — set if the operation was subtraction;

HCF Half-Carry Flag — set if there was an overflow in the lower half
of the result (omi�ed);

CF Carry Flag — set if there was an overflow in the result.

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Processor

CPU state, cont’d

CPU

11

PC

25

SP

6

A

7

B

3

C

. . .

T

ZF

F

OF

F

HCF

F

CF

15732

ticks

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Processor

Example: Sub(A, 5)

CPU

11

PC

25

SP

6

A

7

B

3

C

. . .

T

ZF

F

OF

F

HCF

F

CF

15732

ticks

6 12 1 214 5 0 255 4

... 9 10 11 12 13 14 ...

Memory

Address

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Processor

Example: Sub(A, 5)

CPU

11

PC

25

SP

6

A

7

B

3

C

. . .

T

ZF

F

OF

F

HCF

F

CF

15732

ticks

6 12 1 214 5 0 255 4

... 9 10 11 12 13 14 ...

Memory

Address

Sub(A, n)

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Processor

Example: Sub(A, 5)

CPU

12

PC

25

SP

6

A

7

B

3

C

. . .

T

ZF

F

OF

F

HCF

F

CF

15732

ticks

6 12 1 214 5 0 255 4

... 9 10 11 12 13 14 ...

Memory

Address

Sub(A, 5)

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Processor

Example: Sub(A, 5)

CPU

13

PC

25

SP

1

A

7

B

3

C

. . .

F

ZF

T

OF

F

HCF

F

CF

15739

ticks

6 12 1 214 5 0 255 4

... 9 10 11 12 13 14 ...

Memory

Address

Sub(A, 5)

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Memory

Memory

Memory
controller

Memory
ROM
RAM

I It is necessary to correctly implement the ReadByte and
WriteByte methods: we need to emulate thememory
controller, i.e. the memory management unit (MMU).

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Memory

Naïve implementation

I PC has 16 bits, and therefore the GameBoy memory system
supports 216 = 65536 addresses.

I The naïve implementation is very simple. . .
1 int memo [65536];

2 public int ReadByte(int address)

3 {

4 return memo[address];

5 }

6 public void WriteByte(int address , int value)

7 {

8 memo[address] = value;

9 }

I Can you think of some reasons why this is not so easy?

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Memory

Gotchas

I Generally, logical address 6= physical address:
I Not all writes should succeed (ROM. . .);
I Not all addresses represent main memory (e.g. a special address

allows the CPU to read keypad inputs. . .);
I Two di�erent addresses could be mapped to the same physical

location.
I . . .

I With GameBoy, all of the above hold!

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

GPU

GPU

GPU

I So far, we have managed to design an emulator that can, step
by step, execute any GameBoy program.

I Now we are interested in seeing the results of our work on a
graphical output.

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

GPU

GameBoy graphics

I GameBoy’s graphical output is an LCD with a 160⇥ 144 pixel
resolution =) we can maintain a colour matrix of such size,
and display it in our emulator.

I The values in this matrix have the following format:
0xAARRGGBB (Alpha–Red–Green–Blue)

I GameBoy supports four shades of gray, so the matrix may
contain only these four values:

I 0xFF000000 (BLACK)
I 0xFF555555 (DARK_GRAY)
I 0xFFAAAAAA (LIGHT_GRAY)
I 0xFFFFFFFF (WHITE)

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

GPU

Rendering a single frame (⇠ CRT)

Line 1

Line 2

Line 3

Line 143

Line 144

HBlank

HBlank

HBlank

HBlank

HBlank

VBlank

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

GPU

When do we draw a new frame?

I Every stage in the previous figure takes a specific amount of
time:

Phase Ticks
Line (background) 172

Line (sprites) 80
Horizontal blank 204

Single line 456
Vertical blank 4560
Entire frame 70224

I How could we keep track of when to trigger each phase?

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

GPU

Tiling system

I GameBoy doesn’t have enough memory to keep track of the
entire matrix of pixels; instead, we use a tiling system.

I VRAM contains “tiles” of size 8⇥ 8, and the background is
represented as a 32⇥ 32 matrix of pointers to the tiles.

I Observe that this gives us a total resolution of 256⇥ 256, yet
GameBoy’s LCD is 160⇥ 144!

I Two special-purpose registers, Scroll-X and Scroll-Y,
contain the coordinates of the point on the background that will
be located in the upper-le� corner of the LCD.

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

GPU

Tiling system, cont’d

Tile 1 Tile 2 Tile 3

1 2 2 3
...

...
...

. . .

Background map Background

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Input

Input

Input

I With the GPU implemented, the emulator is able to display
graphical output, but the user/player still has no control over
the game.

I Next step: emulating user input.

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Input

Input

I Input is processed using a special-purpose JOYP register, which
the processor may access at address 65280. The wires leading
to that register are connected in the following way:

JOYP

7

6

5

4

3

2

1

0

A
B
SELECT
START

!

"
#

I The processor first writes 0x10 or 0x20 to the register, so it can
activate one of two columns; then, a�er several ticks, it can
read the least significant 4 bits in order to infer which bu�ons
were pressed.

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Sprites

Sprites

Sprites

I With the input processed, we can play some games – but we
usually have to play blindly (there is no way the player can tell
what his/her position is).

I This issue (and many others) is solved by using sprites – tiles
which may be drawn and moved independent of the
background.

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Sprites

Sprites: additional details

I Sprites use exactly the same type of 8⇥ 8 tiles as the
background.

I Specific parameters, maintained for every sprite in the OAM:
I (x, y) coordinates of the upper-le� corner;
I priority: is it in the foreground or behind the background;
I flip: horizontal or vertical;
I size: all sprites can be resized to 8⇥ 16 at the same time.

I The frame rendering algorithm: first draw the background,
then infer (based on colours and sprite priority) whether to
draw the sprite over the background.

Sprite above background

Sprite below background

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Interrupts

Interrupts

Interrupts

I With sprite support, some simpler games work exactly as
expected.

I Most games require a very important detail: notifying the
processor when it may render the next frame.

I The most convenient time for changing the frame is during
VBlank, because during the line change, the GPU doesn’t
access either VRAM nor OAM.

I The best (in terms of resource management and requirements)
method for notifying the processor about an important event
such as entering VBlank is using interrupts.

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Interrupts

Fetch-decode-execute cycle, revisited

IF
Instruction Fetch

DC
Decode

EX
Execute

IRQ
Interrupt Request

I A�er every executed instruction, the CPU needs to check
whether an interrupt was raised; if an interrupt is detected, the
CPU:

I Remembers its current state;
I Jumps (sets the PC) to the address of the interrupt handler.
I Executes the interrupt handler code, which ends with a special

RETI (Return From Interrupt) instruction, which restores state.
How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Interrupts

Interrupts: GameBoy specifics

I The processor has access to the Interrupt Enable (IE) registers,
through which it can specify which interrupts (out of 5 in total)
it is willing to handle at this point.

I If multiple interrupts are detected, the one with the highest
priority is handled first.

I The processor also has an Interrupt Master Enable (IME) switch,
which allows it to completely deactivate interrupt handling
(this is done during e.g. processing an interrupt, because we
should not handle two of them at the same time).

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Interrupts

GameBoy interrupts

Priority Interrupt Adress of the handler
0 VBlank 0x0040
1 LCD Status 0x0048
2 Timer 0x0050
3 Serial 0x0058
4 Joypad 0x0060

How to make a (GameBoy) emulator? Petar Veličković

Introduction Essential emulator Emulator extensions

Interrupts

We’re done!

I Even with only implementing the VBlank interrupt, our
emulator is capable of running Tetris. :)

I All details about GameBoy’s functionalities, as well as the
Game Boy Color console, may be found on the following
(extremely useful) reference page:
http://problemkaputt.de/pandocs.htm

I For any further queries, feel free to contact me:
pv273@cam.ac.uk

I Thank you!

How to make a (GameBoy) emulator? Petar Veličković

http://problemkaputt.de/pandocs.htm

	Introduction
	What is emulation?
	History and specs of GameBoy
	Overview of the GameBoy emulator

	Essential emulator
	Processor
	Memory
	GPU

	Emulator extensions
	Input
	Sprites
	Interrupts

