Petar Veličković

Research Scientist

Hello, and welcome to one of my homes on the web! I’m Petar, a Staff Research Scientist at DeepMind, Affiliated Lecturer at the University of Cambridge, and an Associate of Clare Hall, Cambridge. I hold a PhD in Computer Science from the University of Cambridge (Trinity College), obtained under the supervision of Pietro Liò. My research concerns geometric deep learning—devising neural network architectures that respect the invariances and symmetries in data (a topic I’ve co-written a proto-book about). For my contributions, I am recognised as an ELLIS Scholar in the Geometric Deep Learning Program. Particularly, I focus on graph representation learning and its applications in algorithmic reasoning (featured in VentureBeat). I am the first author of Graph Attention Networks—a popular convolutional layer for graphs—and Deep Graph Infomax—a popular self-supervised learning pipeline for graphs (featured in ZDNet). My research has been used in substantially improving travel-time predictions in Google Maps (featured in the CNBC, Endgadget, VentureBeat, CNET, the Verge and ZDNet), and guiding intuition of mathematicians towards new top-tier theorems and conjectures (featured in Nature, Science, Quanta Magazine, New Scientist, The Independent, Sky News, The Sunday Times, la Repubblica and The Conversation).

Latest research/news

See more

Upcoming